Nucleoside triphosphate diphosphohydrolases role in the pathophysiology of cognitive impairment induced by seizure in early age.

Neuroscience

Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Avenida Ramiro Barcelos, 2600 Anexo, 90035-000 Porto Alegre, Rio Grande do Sul, Brazil.

Published: April 2011

Studies have shown that seizures in young animals lead to later cognitive deficits. There is evidence that long-term potentiation (LTP) and long-term depression (LTD) might contribute to the neural basis for learning and memory mechanism and might be modulated by ATP and/or its dephosphorylated product adenosine produced by a cascade of cell-surface transmembrane enzymes, such as E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolases) and ecto-5'-nucleotidase. Thus, we have investigated if hippocampal ecto-nucleotidase activities are altered at different time periods after one episode of seizure induced by kainic acid (KA) in 7 days old rats. We also have evaluated if 90 day-old rats previously submitted to seizure induced by KA at 7 days of age presented cognitive impairment in Y-maze behavior task. Our results have shown memory impairment of adult rats (Postnatal day 90) previously submitted to one single seizure episode in neonatal period (Postnatal day 7), which is accompanied by an increased ATP hydrolysis in hippocampal synaptosomes. The metabolism of ATP evaluated by HPLC confirmed that ATP hydrolysis was faster in adult rats treated with KA in neonatal period than in controls. Surprisingly, the mRNA and protein levels as seen by PCR and Western blot, respectively, were not altered by the KA administration in early age. Since we have found an augmented hydrolysis of ATP and this nucleotide seems to be important to LTP induction, we could assume that impairment of memory and learning observed in adult rats which have experienced a convulsive episode in postnatal period may be a consequence of the increased ATP hydrolysis. These findings correlate the purinergic signaling to the cognitive deficits induced by neonatal seizures and contribute to a better understanding about the mechanisms of seizure-induced memory dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2011.01.065DOI Listing

Publication Analysis

Top Keywords

adult rats
12
atp hydrolysis
12
triphosphate diphosphohydrolases
8
cognitive impairment
8
early age
8
cognitive deficits
8
seizure induced
8
postnatal day
8
neonatal period
8
increased atp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!