Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we report bioactivity-guided isolation, purification and characterization of a novel compound, 2-methyl-pyran-4-one-3-O-β-d-glucopyranoside (MPG) from the leaves of Punica granatum. The structure of MPG was established on the basis of its detailed spectral analyses. We demonstrated that MPG not only inhibited the expression of cell adhesion molecules but also significantly blocked its functional consequence, that is, the adhesion of neutrophils on human endothelial cells monolayer. To elucidate the molecular mechanism of action of MPG, we showed that MPG decreased the transcript levels of ICAM-1, VCAM-1 and E-selectin genes. Using electrophoretic mobility shift assay (EMSA) and western blot analyses, we demonstrated that MPG significantly blocked both the TNFα-induced translocation and activation of nuclear transcription factor-κB (NF-κB). Thus, MPG could be useful as a novel lead molecule for developing future anti-inflammatory agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2011.01.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!