Using an in vivo L-band electron spin resonance (ESR) system, we determined changes in reactive oxygen species (ROS) levels during the early stage (within 60 minutes) of global cerebral ischemia-reperfusion (IR) under normothermic and hypothermic conditions in rats. To confirm the neuroprotective role of hypothermia in this IR model, we immunohistochemically evaluated the levels of active caspase-3 in the hippocampal CA1 sector. ROS levels increased within the first 15 minutes following IR under both normothermic and hypothermic conditions; however, the ROS levels did not differ significantly between normothermic and hypothermic conditions. In the later periods of IR, there were no significant changes in ROS levels for either normothermic or hypothermic conditions relative to the control. As expected, normothermia increased the number of active caspase-3 immunoreactive nuclei in the IR model. However, this induction was prevented by hypothermia. These results suggest that the neuroprotective role of hypothermia does not correlate with the early ROS-induced oxidative stress following IR as measured by ESR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jocn.2010.07.140DOI Listing

Publication Analysis

Top Keywords

ros levels
16
normothermic hypothermic
16
hypothermic conditions
16
reactive oxygen
8
oxygen species
8
electron spin
8
spin resonance
8
neuroprotective role
8
role hypothermia
8
active caspase-3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!