Fas-associated death domain protein is a key component of the extrinsic apoptotic pathway. In addition, in animal models, Fas-associated death domain protein phosphorylation at serine 194 has been shown to affect cell proliferation, especially in T lymphocytes. The importance of Fas-associated death domain protein phosphorylation at serine 194 for the proliferation of B lymphocytes, however, is uncertain. Here we show in reactive lymph nodes that serine 194 phosphorylated Fas-associated death domain protein is expressed predominantly in the dark (proliferative) zone of germinal centers. In B-cell non-Hodgkin lymphoma cell lines, serine 194 phosphorylated Fas-associated death domain protein levels are substantially higher in highly proliferating cells and lower in serum-starved cells. We also used immunohistochemical analysis to assess Fas-associated death domain protein phosphorylation at serine 194 expression in 122 B-cell non-Hodgkin-type lymphomas. The mean percentage of serine 194 phosphorylated Fas-associated death domain protein positive tumor cells was 81% in Burkitt lymphoma, 41% in diffuse large B-cell lymphoma, 18% in follicular lymphoma, 18% in plasma cell myeloma, 12% in extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue, 11% in mantle cell lymphoma, and 2% in chronic lymphocytic leukemia/small lymphocytic lymphoma (P < .0001, Kruskal-Wallis test). Furthermore, in chronic lymphocytic leukemia/small lymphocytic lymphoma, serine 194 phosphorylated Fas-associated death domain protein was detected predominantly in proliferation centers. In the entire study group, the percentage of cells positive for serine 194 phosphorylated Fas-associated death domain protein correlated significantly with the proliferation index Ki-67 (Spearman R = 0.9, P < .0001). These data provide evidence that serine 194 phosphorylated Fas-associated death domain protein is involved in the proliferation of normal and neoplastic B cells and has features of a novel proliferation marker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089890 | PMC |
http://dx.doi.org/10.1016/j.humpath.2010.11.002 | DOI Listing |
FEBS J
January 2025
Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China.
TNFAIP3-interacting protein 1 (TNIP1; also known as ABIN-1) is a ubiquitin-binding protein that suppresses death-receptor- or Toll-like receptor-mediated apoptosis and necroptosis; however, it remains unclear whether ABIN-1 is capable of regulating pyroptosis. In the present study, we found that, in mouse embryonic fibroblasts and macrophages, ABIN-1 deficiency sensitized cells to poly(I:C) + TAK1 inhibitor 5Z-7-oxozeaenol-induced pyroptosis besides apoptosis and necroptosis. The sensitizing effect of ABIN-1 deficiency on pyroptosis depended on caspase-8 and its adaptor molecule FAS-associated death domain protein.
View Article and Find Full Text PDFTransl Androl Urol
December 2024
Department of Urology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China.
Background: Speckle-type POZ protein (SPOP), FAS-associated protein with death domain (FADD), and nuclear transcription factor-κB (NF-κB) have been shown to be associated with the development of prostate cancer (PCa). FADD has been shown to activate the NF-κB pathway to promote tumorigenesis, while SPOP has been shown to enhance the breakdown of FADD and inhibit the function of the NF-κB signaling pathway in non-small cell lung cancer. The existence of this mechanism has not yet been confirmed in PCa.
View Article and Find Full Text PDFFish Shellfish Immunol
February 2025
Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China. Electronic address:
Fas-associated protein with Death Domain (FADD) is a crucial signaling component of apoptosis and a vital immunomodulator on inflammatory signaling pathways. However, information on FADD-mediated apoptosis and immune regulation is limited in teleost. We herein cloned a FADD homolog, AjFADD, from Japanese eel (Anguilla japonica).
View Article and Find Full Text PDFFront Immunol
December 2024
College of Pharmacy, Yonsei University, Incheon, Republic of Korea.
Introduction: Recent investigations have highlighted the intratumoral administration of Toll-like receptor (TLR) ligands as a promising approach to initiate localized immune responses and enhance antitumor immunity. However, the clinical application of these ligands is limited by their rapid dissemination from the tumor microenvironment, raising concerns about reduced effectiveness and systemic toxicity.
Methods: To address these challenges, our study focused on the intratumoral delivery of mRNA encoding UNE-C1, a TLR2/6 ligand known for its efficacy and low toxicity profile.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!