Cell death-inducing DNA fragmentation factor alpha-like effector A (CIDEA) is endogenously expressed in human but not rodent white adipocytes. We performed a bioinformatic analysis of the human CIDEA sequence and found conserved amino-acid motifs involved in binding to nuclear receptors. Protein-protein binding experiments and transactivation assays confirmed that CIDEA binds to liver X receptors and regulates their activity in vitro. Cell fractionation demonstrated that CIDEA localizes to both the cytoplasm and the nucleus in human white adipocytes. The interaction between CIDEA and nuclear receptors could therefore be of importance for the regulation of metabolic processes in human adipose tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2011.02.004 | DOI Listing |
Nat Commun
December 2024
Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
Adverse aortic remodeling increases the risk of aorta-related adverse events (AAEs) after thoracic endovascular aortic repair (TEVAR) and affects the overall prognosis of aortic dissection (AD). It is imperative to delve into the exploration of prognostic indicators to streamline the identification of individuals at elevated risk for postoperative AAEs, and therapeutic targets to optimize the efficacy of TEVAR for patients with AD. Here, we perform proteomic and single-cell transcriptomic analyses of peripheral blood and aortic lesions, respectively, from patients with AD and healthy subjects.
View Article and Find Full Text PDFGastroenterol Rep (Oxf)
December 2024
Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China.
Hepatic fibrosis, a degenerative liver lesion, significantly contributes to the deterioration and mortality among patients with chronic liver diseases. The condition arises from various factors including toxins, such as alcohol, infections like different types of viral hepatitis, and metabolic diseases. Currently, there are no effective treatments available for liver fibrosis.
View Article and Find Full Text PDFBMC Womens Health
December 2024
The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315000, China.
Background: This study aimed to construct, evaluate, and validate nomograms for breast cancer-specific survival (BCSS) and overall survival (OS) prediction in patients with HER2- overexpressing (HER2+) metastatic breast cancer (MBC).
Methods: The Surveillance, Epidemiology, and End Results (SEER) database was used to select female patients diagnosed with HER2 + MBC between 2010 and 2015. These patients were distributed into training and validation groups (7:3 ratio).
Mol Med
December 2024
Hebei University of Chinese Medicine, Shijiazhuang, 050091, China.
Nuclear receptor 4A1 (NR4A1) is a gene that increases the likelihood of chronic kidney disease (CKD) and contributes to its development. Previous research has shown that the SAM pointed domain containing Ets transformation-specific transcription factor (SPDEF) can activate NR4A1, but its mechanism of action in renal fibrosis is not yet clear. In this study, we used adenovirus to create a mouse kidney model with a specific knockdown of NR4A1 gene.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Center for Immunology and Cellular Biotechnology, Institute of Medicine and Life Sciences, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia.
Background: Epidermal growth factor receptor 4 (ERBB4) and neuregulin 4 (NRG4) have been shown to reduce steatosis and prevent the development of non-alcoholic steatohepatitis in mouse models, but little to nothing is known about their role in non-alcoholic fatty liver disease (NAFLD) in humans. This study is the first to investigate the expression of and mRNAs and their role in lipid metabolism in the livers of individuals with obesity, type 2 diabetes and biopsy-proven NAFLD.
Methods: Liver biospecimens were obtained intraoperatively from 80 individuals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!