A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide. | LitMetric

Deciphering a mechanism of membrane permeabilization by α-hordothionin peptide.

Biochim Biophys Acta

School of Plant, Environmental, and Soil Sciences, Louisiana State Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA.

Published: June 2011

α-Hordothionin (αHTH) belongs to thionins, the plant antimicrobial peptides with membrane-permeabilizing activity which is associated with broad-range antimicrobial activity. Experimental data have revealed a phospholipid-binding site and indicated formation of ion channels as well as membrane disruption activity of thionin. However, the mechanism of membrane permeabilization by thionin remained unknown. Here it is shown that thionin is a small water-selective channel. Unbiased high-precision molecular modeling revealed formation of a water-selective pore running through the αHTH double α-helix core when the peptide interacted with anions. Anion-induced unfolding of the C-end of the α2-helix opened a pore mouth. The pore started at the α2 C-end between the hydrophilic and the hydrophobic regions of the peptide surface and ended in the middle of the unique hydrophobic region at the C-end of the α1-helix. Highly conserved residues including cysteines and tyrosine lined the pore walls. A large positive electrostatic potential accumulated inside the pore. The narrow pore was, nonetheless, sufficient to accommodate at least one water molecule along the channel except for two constriction sites. Both constriction sites were formed by residues participating in the phospholipid-binding site. The channel properties resembled that of aquaporins with two selectivity filters, one at the entrance, inside the α2 C-end cavity, and a second in the middle of the channel. It is proposed that the αHTH water channel delivers water molecules to the bilayer center that leads to local membrane disruption. The proposed mechanism of membrane permeabilization by thionins explains seemingly controversial experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2011.02.003DOI Listing

Publication Analysis

Top Keywords

mechanism membrane
12
membrane permeabilization
12
experimental data
8
phospholipid-binding site
8
membrane disruption
8
α2 c-end
8
constriction sites
8
pore
6
membrane
5
channel
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!