Cell seeding and attachment in three-dimensional scaffolds is a key step in tissue engineering with implications for cell differentiation and tissue development. In this work, two new seeding methods were investigated using human chondrocytes and polyglycolic acid (PGA) fibrous mesh scaffolds. A simple semi-static seeding method using culture plates and tissue flasks was developed as an easy-to-perform modification of static seeding. An alginate-loading method was also studied, using alginate hydrogel as an adjuvant for entrapping cells within PGA scaffolds. Both the semi-static and PGA-alginate methods produced more homogeneous cell distributions than conventional static and dynamic seeding. Using 20 × 10(6) cells, whereas the seeding efficiency for static seeding was only 52%, all other techniques produced seeding efficiencies of ≥ 90%. With 40 × 10(6) cells, the efficiency of semi-static seeding declined to 74% while the dynamic and PGA-alginate methods retained their ability to accommodate high cell numbers. The seeded scaffolds were cultured in recirculation bioreactors to determine the effect of seeding method on cartilage production. Statically seeded scaffolds did not survive the 5-week cultivation period. Deposition of extracellular matrix in scaffolds seeded using the semi-static and PGA-alginate methods was more uniform compared with scaffolds seeded using the dynamic method. The new semi-static and PGA-alginate seeding methods developed in this work are recommended for tissue engineering because they provide substantial benefits compared with static seeding in terms of seeding efficiency, cell distribution, and cartilage deposition while remaining simple and easy to execute.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.509 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFLaryngoscope
January 2025
Department of Otorhinolaryngology-Head & Neck Surgery, Faculty of Medicine, Suez University, Suez, Egypt.
We present a simple and innovative sialendoscopy basket stone retrieval (BSR) simulator model composed mainly of a 1.0-mL insulin syringe with detachable needle whose lumen mimics a dilated salivary duct. Dried Guava seeds are used to imitate small-sized floating sialoliths.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.
View Article and Find Full Text PDFNPJ Microgravity
January 2025
NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL, USA.
The MISSE-Seed project was designed to investigate the effects of space exposure on seed quality and storage. The project tested the Multipurpose Materials International Space Station Experiment-Flight Facility (MISSE-FF) hardware as a platform for exposing biological samples to the space environment outside the International Space Station (ISS). Furthermore, it evaluated the capability of a newly designed passive sample containment canister as a suitable exposure unit for biological samples for preserving their vigor while exposing to the space environment to study multi-stressor effects.
View Article and Find Full Text PDFNat Commun
January 2025
School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA.
Zoologists have adduced morphological convergence among embryonic stages of closely related taxa, which has been called the phylotypic stage of embryogenesis. Transcriptomic analyzes reveal an hourglass pattern of gene expression during plant and animal embryogenesis, characterized by the accumulation of evolutionarily older and conserved transcripts during mid-embryogenesis, whereas younger less-conserved transcripts predominate at earlier and later embryonic stages. In contrast, comparisons of embryonic gene expression among different animal phyla describe an inverse hourglass pattern, where expression is correlated during early and late stages but not during mid-embryo development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!