Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond.

Am J Med Genet C Semin Med Genet

Department of Molecular and Human, Genetics at Baylor College of Medicine, Houston, TX 77030, USA.

Published: February 2011

The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Deficiencies of any of these enzymes of the cycle result in urea cycle disorders (UCD), a group of inborn errors of hepatic metabolism that often result in life threatening hyperammonemia. Argininosuccinate lyase (ASL) is a cytosolic enzyme which catalyzes the fourth reaction in the cycle and the first degradative step, that is, the breakdown of argininosuccinic acid to arginine and fumarate. Deficiency of ASL results in an accumulation of argininosuccinic acid in tissues, and excretion of argininosuccinic acid in urine leading to the condition argininosuccinic aciduria (ASA). ASA is an autosomal recessive disorder and is the second most common UCD. In addition to the accumulation of argininosuccinic acid, ASL deficiency results in decreased synthesis of arginine, a feature common to all UCDs except argininemia. Arginine is not only the precursor for the synthesis of urea and ornithine as part of the urea cycle but it is also the substrate for the synthesis of nitric oxide, polyamines, proline, glutamate, creatine, and agmatine. Hence, while ASL is the only enzyme in the body able to generate arginine, at least four enzymes use arginine as substrate: arginine decarboxylase, arginase, nitric oxide synthetase (NOS) and arginine/glycine aminotransferase. In the liver, the main function of ASL is ureagenesis, and hence, there is no net synthesis of arginine. In contrast, in most other tissues, its role is to generate arginine that is designated for the specific cell's needs. While patients with ASA share the acute clinical phenotype of hyperammonemia, encephalopathy, and respiratory alkalosis common to other UCD, they also present with unique chronic complications most probably caused by a combination of tissue specific deficiency of arginine and/or elevation of argininosuccinic acid. This review article summarizes the clinical characterization, biochemical, enzymatic, and molecular features of this disorder. Current treatment, prenatal diagnosis, diagnosis through the newborn screening as well as hypothesis driven future treatment modalities are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073162PMC
http://dx.doi.org/10.1002/ajmg.c.30289DOI Listing

Publication Analysis

Top Keywords

argininosuccinic acid
20
urea cycle
12
arginine
9
argininosuccinate lyase
8
accumulation argininosuccinic
8
common ucd
8
synthesis arginine
8
nitric oxide
8
generate arginine
8
argininosuccinic
6

Similar Publications

Background: Indole-3-carbinol (I3C) is a compound derived from Cruciferous vegetables. We aim to ascertain whether I3C mediates the relations between mouse gut microbiota, intestinal barrier function, and metabolism to treat obesity in mice.

Methods: The experimental analyses focused on the changes in lipid distribution, inflammatory cytokines, glucose tolerance, gut microbiota composition, and serum metabolomics of 60 C57BL/6N mice.

View Article and Find Full Text PDF

Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) is a chromatin modifier responsible for regulating the demethylation of histone H3 lysine 27 trimethylation (H3K27me3), which is crucial for human neurodevelopment. To date, the impact of UTX on neurodevelopment remains elusive. Therefore, this study aimed to investigate the potential molecular mechanisms underlying the effects of UTX on neurodevelopment through untargeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).

View Article and Find Full Text PDF

Liver transplantation (LTx) is increasingly used in Urea Cycle Defects (UCDs) to prevent recurrent hyperammonemia and related neurological irreversible injury. Among UCDs, argininosuccinate lyase deficiency (ASLD) has a more complex phenotype than other UCDs, with long-term neurocognitive deficits. Therefore, the role of LTx in ASLD is still debated.

View Article and Find Full Text PDF

Intestinal microbiota are pathophysiologically involved in diabetic nephropathy (DN). Dapagliflozin, recognized for its blood glucose-lowering effect, has demonstrated efficacy in improving DN. However, the mechanisms beyond glycemic control that mediate the impact of dapagliflozin on DN remain unclear.

View Article and Find Full Text PDF

Metabolomic and microbiomic resilience of Hong Kong oysters to dual stressors: Zinc oxide nanoparticles and low salinity.

Chemosphere

November 2024

Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China. Electronic address:

Zinc oxide nanoparticles, increasingly used in industrial and consumer products, and low salinity, exacerbated by climate change-induced alterations in precipitation patterns, represent significant environmental pressures in estuarine and coastal environments. This study advances previous research on their impacts on Hong Kong oysters (Crassostrea hongkongensis) by integrating metabolomics of hepatopancreas and gills with intestinal microbiomics. Employing advanced multi-omics integration methods, our analysis reveals novel insights into metabolic resilience under combined stress conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!