The genome of a tomato-infecting begomovirus from Ranchi, India, was cloned, sequenced and analysed. The viral genome shared 88.3% sequence identity with an isolate belonging to the species Tobacco curly shoot virus (TbCSV), and this virus should therefore be considered a member of a new species, tentatively named Tomato leaf curl Ranchi virus (ToLCRnV). The DNA-β molecule, which had 74.5% sequence identity with tomato leaf curl Bangladesh betasatellite (ToLCBDB), is named tomato leaf curl Ranchi betasatellite (ToLCRnB). Phylogenetic analysis revealed that ToLCRnV is related to tomato leaf curl Bangladesh virus (ToLCBDV), tobacco curly shoot virus (TbCSV) and tomato leaf curl Gujarat virus (ToLCGV). An infectivity study with ToLCRnV established the monopartite nature of the viral genome, whereas inoculation with ToLCRnB resulted in increased symptom severity. ToLCRnV could transreplicate DNA-B of tomato leaf curl Gujarat virus (ToLCGV) and tomato leaf curl New Delhi virus (ToLCNDV), both in N. benthamiana and tomato, although DNA-B accumulation of was less than with the wild-type combinations. ToLCRnB could be efficiently replicated by DNA-A of both ToLCNDV and ToLCGV. A leaf disk assay suggests that DNA-A could transreplicate the homologous DNA-B and DNA-β more efficiently than the heterologous one.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-011-0915-1DOI Listing

Publication Analysis

Top Keywords

tomato leaf
28
leaf curl
28
tomato-infecting begomovirus
8
viral genome
8
sequence identity
8
tobacco curly
8
curly shoot
8
virus
8
shoot virus
8
virus tbcsv
8

Similar Publications

PROCERA interacts with JACKDAW in gibberellin-enhanced source-sink sucrose partitioning in tomato.

Plant Physiol

January 2025

Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.

Proper regulation of the source-sink relationship is an effective way to increase crop yield. Gibberellin (GA) is an important regulator of plant growth and development, and physiological evidence has demonstrated that GA can promote source-sink sucrose partitioning. However, the underlying molecular mechanism remains unclear.

View Article and Find Full Text PDF

Halophytes display distinctive physiological mechanisms that enable their survival and growth under extreme saline conditions. This makes them potential candidates for their use in saline agriculture. In this research, tomato (Solanum lycopersium Mill.

View Article and Find Full Text PDF

Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes.

View Article and Find Full Text PDF

Typhlodromus (Anthoseius) recki feeds on pest mites on tomato plants and its introduction into crops via companion plants, Mentha suaveolens and Phlomis fruticosa, has been recently investigated. This study aims at assessing the predator arrestment behavior, through lab choice tests to determine the effects of (i) prey (Aculops lycopersici and Tetranychus urticae) vs Typha angustifolia pollen deposited on companion plant or Solanum nigrum, (ii) T. urticae vs A.

View Article and Find Full Text PDF

Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein.

Mol Plant Pathol

January 2025

Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!