An environmental Burkholderia cepacia strain named Cs5 was isolated and identified first using API biochemical identification system and then with 16S rDNA and recA sequence homology search. This bacterium exhibited a broad spectrum of fungicidal activities against Alternaria alternata, Aspergillus niger, Fusarium culmorum, F. graminearum, F. oxysporum and Rhizoctonia solani. In the liquid conditions, the MIC of A. niger and R. solani were reached with, respectively, 1.25-2% of the Cs5 liquid culture supernatant. However, in the solid conditions, the same inhibition was caused in the presence of 3% of the Cs5 supernatant. The exhibition of these two fungi at low concentrations of supernatant Cs5 caused various morphological changes of their mycelia which were observed by confocal microscopy. Three antifungal compounds, named Cs5-255, Cs5-257 and Cs5-446, were purified from the Cs5 culture. The structural analysis of these molecules showed that Cs5-255 and Cs5-257 are analogous and belonged to the alkyl-quinolone family, while Cs5-446 was a didecyl-phthalate, isolated for the first time from a bacterium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-011-9892-6 | DOI Listing |
Sci Rep
January 2025
School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X 54001, Durban, 4000, South Africa.
Declining soil health and productivity are key challenges faced by sugarcane small-scale growers in South Africa. Incorporating Vicia sativa and Vicia villosa as cover crops can improve soil health by enhancing nutrient-cycling enzyme activities and nitrogen (N) contributions while promoting the presence of beneficial bacteria in the rhizosphere. A greenhouse experiment was conducted to evaluate the chemical and biological inputs of V.
View Article and Find Full Text PDFWater Res
January 2025
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China. Electronic address:
The ubiquitous presence, potential toxicity, and persistence of 2-ethylhexyl diphenyl phosphate (EHDPP) in the environment have raised significant concerns. In this study, we successfully isolate a novel microbial consortium, named 8-ZY, and we demonstrate its remarkable ability to degrade EHDPP using an extremely low concentration of the inoculate. A total of 11 degradation metabolites were identified, including hydrolysis, hydroxylated, methylated, glucuronide-conjugated, and previously unreported byproducts, enabling us to propose new transformation pathways.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil.
Cowpea (Vigna unguiculata) is recognized as a promiscuous legume in its symbiotic relationships with rhizobia, capable of forming associations with a wide range of bacterial species. Our study focused on assessing the diversity of bacterial strains present in cowpea nodules when inoculated with soils from six indigenous lands of Mato Grosso do Sul state, Central-Western Brazil, comprising the Cerrado and the Pantanal biomes, which are known for their rich diversity. The DNA profiles (BOX-PCR) of 89 strains indicated great genetic diversity, with 20 groups and 23 strains occupying single positions, and all strains grouped at a final similarity level of only 25%.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zürich, 8008, Switzerland.
Burkholderia cenocepacia H111 is an obligate aerobic bacterium which has been isolated from a cystic fibrosis (CF) patient. In CF lungs the environment is considered micro-oxic or even oxygen-depleted due to bacterial activities and limited oxygen diffusion in the mucus layer. To adapt to low oxygen concentrations, bacteria possess multiple terminal oxidases.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!