Objective: To validate a newly developed quantification method that automatically detects and quantifies the joint space width (JSW) in hand radiographs. Repeatability, accuracy and sensitivity to changes in JSW were determined. The influence of joint location and joint shape on the measurements was tested.
Methods: A mechanical micrometer set-up was developed to define and adjust the true JSW in an acrylic phantom joint and in human cadaver-derived phalangeal joints. Radiographic measurements of the JSW were compared to the true JSW. Repeatability, systematic error (accuracy) and sensitivity (defined as the smallest detectable difference (SDD)) were determined. The influence of joint position on the JSW measurement was assessed by varying the location of the acrylic phantom on the X-ray detector with respect to the X-ray beam and the influence of joint shape was determined by using morphologically different human cadaver joints.
Results: The mean systematic error was 0.052 mm in the phantom joint and 0.210 mm in the cadaver experiment. In the phantom experiments, the repeatability was high (SDD = 0.028 mm), but differed slightly between joint locations (p = 0.046), and a change in JSW of 0.037 mm could be detected. Dependent of the joint shape in the cadaver hand, a change in JSW between 0.018 and 0.047 mm could be detected.
Conclusions: The automatic quantification method is sensitive to small changes in JSW. Considering the published data of JSW decline in the normal and osteoarthritic population, the first signs of OA progression with this method can be detected within 1 or 2 years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223586 | PMC |
http://dx.doi.org/10.1007/s00256-011-1110-x | DOI Listing |
JMIR Public Health Surveill
January 2025
Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
Background: Numerous studies have assessed the risk of SARS-CoV-2 exposure and infection among health care workers during the pandemic. However, far fewer studies have investigated the impact of SARS-CoV-2 on essential workers in other sectors. Moreover, guidance for maintaining a safely operating workplace in sectors outside of health care remains limited.
View Article and Find Full Text PDFBlood
January 2025
State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.
Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom.
The preference for simple explanations, known as the parsimony principle, has long guided the development of scientific theories, hypotheses, and models. Yet recent years have seen a number of successes in employing highly complex models for scientific inquiry (e.g.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.
View Article and Find Full Text PDFIn 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, traditional image processing methods may lead to high false positive rates, which is unacceptable in disease monitoring and early warning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!