Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The gas phase reactivity of perhalogenated closo-dodecaborate clusters [B(12)X(12)](2-) (X = F, Cl, Br, I) with N-tetraalkylated ammonium counter ions was investigated by electrospray ionization ion trap mass spectrometry (ESI-IT-MS). Collisions with the background gases introduced a broad variety of gas phase reactions. This study represents the first experimental approach to a new class of boron-rich boron clusters that are not accessible in the condensed phase. The anionic ion pair [B(12)X(12) + N(C(n)H(2n+1))(4)](-) is generally found as the ion of highest mass. Its reaction sequence starts with an alkyl transfer from the ammonium ion to the dodecaborate cluster. Subsequently, the alkylated intermediate [B(12)X(12) + C(n)H(2n+1)](-) decomposes to give very reactive ions of the general formula [B(12)X(11)](-). These ions possess a free boron vertex and immediately bind to the residual gases N(2) and H(2)O in the ion trap by formation of the corresponding adducts [B(12)X(11) + N(2)](-) and [B(12)X(11) + H(2)O](-). Subsequent fragmentations of the water adduct repetitively substitute halogen atoms by hydroxyl groups. The fragmentation process of the free anion [B(12)X(12)](2-) depends on the applied excitation energy and on the halogen substituent X. A radical dehalogenation of the B(12) unit is observed for X = I, whereas for X = Cl or F the loss of small molecules (mainly BX(3)) dominates. The different reaction behavior is explained by the different electron affinity of the halogens and the strength of the boron-halogen-bonds. Surprisingly, isolation of the fragment ion [B(12)I(9)](-) in the ion trap yields the highly stable [B(24)I(18)](2-) dianion. This observation suggests a reaction between two negative ions in the gas phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0cp02386h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!