Background: Overwhelming systemic inflammation has been implicated in the progression of acute lung injury (ALI) leading to multiple organ failure (MOF) and death. Previous studies suggest that mechanical ventilation (MV) may be a key mediator of MOF through an upregulation of the systemic inflammatory response.

Objectives: It was the aim of this study to investigate mechanisms whereby mechanical stress induced by different tidal volumes may contribute to the development of systemic inflammation and maladaptive peripheral organ responses in the setting of ALI.

Methods: An acid aspiration model of ALI was employed in 129X1/SVJ mice through an intratracheal administration of hydrochloric acid followed by MV employing either a low (5 ml/kg) or high (12.5 ml/kg) tidal volume ventilation for 120 min. The isolated perfused mouse lung setup was used to assess the specific contribution of the lung to systemic inflammation during MV. Furthermore, lung perfusate collected over the course of MV was used to assess the effects of lung-derived mediators on activation (expression of a proadhesive phenotype) of liver endothelial cells.

Results: High tidal volume MV of acid-injured lungs resulted in greater physiologic and histological indices of lung injury compared to control groups. Additionally, there was an immediate and significant release of multiple inflammatory mediators from the lung into the systemic circulation which resulted in greater levels of mRNA adhesion molecule expression in liver endothelial cells in vitro.

Conclusions: This study suggests that MV, specifically tidal volume strategy, influences the development of MOF through an upregulation of lung-derived systemic inflammation resulting in maladaptive cellular changes in peripheral organs.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000323609DOI Listing

Publication Analysis

Top Keywords

systemic inflammation
20
tidal volume
16
lung injury
12
mof upregulation
8
inflammation maladaptive
8
lung systemic
8
liver endothelial
8
systemic
7
lung
7
tidal
5

Similar Publications

Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.

View Article and Find Full Text PDF

This study aims to investigate the association between serum copper (Cu), selenium (Se), zinc (Zn), Se/Cu and Zn/Cu ratios and the risk of sarcopenia. In this study, which involved 2766 adults aged ≥ 20 years enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016, multivariable logistic regression, restricted cubic spline (RCS) models and mediation analyses were used. After full adjustment, multivariable logistic regression revealed that higher serum copper levels were correlated with an increased risk of sarcopenia.

View Article and Find Full Text PDF

Snake venom galactoside-binding lectin from Bothrops jararacussu: Special role in leukocytes activation and function.

Int J Biol Macromol

January 2025

Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Nilton Lins, Manaus, AM, Brazil. Electronic address:

Article Synopsis
  • SVgalLs are toxins from Bothrops snake venoms that bind to galactose-containing carbohydrates in a calcium-dependent way.
  • BjcuL, a key C-type lectin from Bothrops jararacussu venom, has been extensively studied for its role in inflammation by activating immune cell functions.
  • The review discusses the current knowledge on snake venom lectins' effects in pathophysiology and outlines future research directions, including advanced technologies for discovering new therapeutic targets.
View Article and Find Full Text PDF

Effects of dioscin from Dioscorea nipponica on TL1A/DR3 and Th9 cells in a collagen-induced arthritis mouse model.

Int Immunopharmacol

January 2025

Department of Anatomy, Basic Medical Institute, Chengde Medical University, Chengde 067000 Hebei, China. Electronic address:

Rheumatoid arthritis (RA) is a systemic autoimmune disease, and TL1A and its receptor DR3 play important roles in its pathogenesis. Th9 cells are involved in RA development. Dioscin from Dioscorea nipponica (DDN) has a therapeutic effect on RA, but its effect on TL1A/DR3 and Th9 cells remains unclear.

View Article and Find Full Text PDF

A Lu-nucleotide coordination polymer-incorporated thermosensitive hydrogel with anti-inflammatory and chondroprotective capabilities for osteoarthritis treatment.

Biomaterials

January 2025

Department of Nuclear Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Biological Nanotechnology, NHC, No. 87 Xiangya Road, Changsha, Hunan, 410008, China. Electronic address:

Osteoarthritis (OA) is a prevalent and debilitating condition characterized by cartilage destruction and inflammation. Traditional pharmacotherapies for OA are limited by their short-term efficacy and systemic side effects. Radiosynoviorthesis (RSO), involving intra-articular injection of radiopharmaceuticals, has shown promise for OA treatment but is hindered by the toxicity and rapid clearance of radioisotopes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!