Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, there has been growing interest in compressed sensing (CS), the new theory that shows how a small set of linear measurements can be used to reconstruct a signal if it is sparse in a transform domain. Although CS has been applied to many problems in other fields, in computer graphics, it has only been used so far to accelerate the acquisition of light transport. In this paper, we propose a novel application of compressed sensing by using it to accelerate ray-traced rendering in a manner that exploits the sparsity of the final image in the wavelet basis. To do this, we raytrace only a subset of the pixel samples in the spatial domain and use a simple, greedy CS-based algorithm to estimate the wavelet transform of the image during rendering. Since the energy of the image is concentrated more compactly in the wavelet domain, less samples are required for a result of given quality than with conventional spatial-domain rendering. By taking the inverse wavelet transform of the result, we compute an accurate reconstruction of the desired final image. Our results show that our framework can achieve high-quality images with approximately 75 percent of the pixel samples using a nonadaptive sampling scheme. In addition, we also perform better than other algorithms that might be used to fill in the missing pixel data, such as interpolation or inpainting. Furthermore, since the algorithm works in image space, it is completely independent of scene complexity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2010.46 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!