In healthy individuals, deep inspiration produces bronchodilation and reduced airway responsiveness, which may be a response of the airway wall to mechanical stretch. The aim of this study was to examine the in vitro response of isolated human airways to the dynamic mechanical stretch associated with normal breathing. Human bronchial segments (n = 6) were acquired from patients without airflow obstruction undergoing lung resection for pulmonary neoplasms. The side branches were ligated and the airways were mounted in an organ bath chamber. Airway narrowing to cumulative concentrations of acetylcholine (3 × 10(-6) M to 3 × 10(-3) M) was measured under static conditions and in the presence of "tidal" oscillations with intermittent "deep inspiration." Respiratory maneuvers were simulated by varying transmural pressure using a motor-controlled syringe pump (tidal 5 to 10 cmH(2)O at 0.25 Hz, deep inspiration 5 to 30 cmH(2)O). Airway narrowing was determined from decreases in lumen volume. Tidal oscillation had no effect on airway responses to acetylcholine which was similar to those under static conditions. Deep inspiration in tidally oscillating, acetylcholine-contracted airways produced potent, transient (<1 min) bronchodilation, ranging from full reversal in airway narrowing at low acetylcholine concentrations to ∼50% reversal at the highest concentration. This resulted in a temporary reduction in maximal airway response (P < 0.001), without a change in sensitivity to acetylcholine. Our findings are that the mechanical stretch of human airways produced by physiological transmural pressures generated during deep inspiration produces bronchodilation and a transient reduction in airway responsiveness, which can explain the beneficial effects of deep inspiration in bronchial provocation testing in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.01226.2010 | DOI Listing |
Sci Rep
December 2024
Computer Engineering Department, Umm Al-Qura University, Mecca, 24381, Saudi Arabia.
Efficient traffic management solutions in 6G communication systems face challenges as the scale of the Internet of Things (IoT) grows. This paper aims to yield an all-inclusive framework ensuring reliable air pollution monitoring throughout smart cities, capitalizing on leading-edge techniques to encourage large coverage, high-accuracy data, and scalability. Dynamic sensors deployed to mobile ad-hoc pieces of fire networking sensors adapt to ambient changes.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia.
TCIPP (tris(1,3-dichloro-2-propyl) phosphate) and TCEP (tris(2-chloroethyl) phosphate) are organophosphate ester flame retardants found in various consumer products, posing significant health and environmental risks through inhalation, ingestion, and dermal exposure. Research reveals these compounds cause oxidative stress, inflammation, endocrine disruption, genotoxicity, neurotoxicity, and potentially hepatotoxicity, nephrotoxicity, cardiotoxicity, developmental, reproductive, and immunotoxicity. This review summarizes the current knowledge on the toxicological mechanisms of TCIPP and TCEP and presents the latest data on their toxicological effects obtained in vitro and in vivo, using omic systems, and on the basis of computational modelling.
View Article and Find Full Text PDFAdv Mater
December 2024
Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA.
Bamboo culm has been widely used in engineering for its high strength, lightweight, and low cost. Its outermost epidermis is a smooth and dense layer that contains cellulose, silica particles, and stomata and acts as a water and mechanical barrier. Recent experimental studies have shown that the layer has a higher mechanical strength than other inside regions.
View Article and Find Full Text PDFNeuroimage
December 2024
Medical Image Processing Department, CHU Amiens-Picardie University Hospital, Amiens, France; CHIMERE UR 7516, University of Picardie Jules Verne, Amiens, France. Electronic address:
Understanding cerebrospinal fluid (CSF) dynamics is crucial for elucidating the pathogenesis and diagnosis of neurodegenerative diseases. The primary mechanisms driving CSF oscillations remain a topic of debate. This study investigates whether cerebral blood volume displacement (CBV), modulated by breathing and cardiac activity, are the predominant drivers of CSF oscillations.
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2024
The Nash Family Center for Advanced Circuit Therapeutics at the Icahn School of Medicine at Mount Sinai West, New York, NY, 10019, United States.
Introduction: Subthalamic nucleus deep brain stimulation (STN DBS) improves motor symptoms of Parkinson's disease (PD), but its effect on motivation is controversial. Apathy, the lack of motivation, commonly occurs in PD and is often exacerbated after surgery and its concomitant levodopa reduction. Apathy and reward processing are associated with the ventromedial prefrontal cortex (vmPFC), which standard targeting strategies avoid by targeting the dorsolateral STN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!