Though exposure to air pollution has a detrimental effect on respiratory health, few studies have examined the association between elemental carbon exposure and lung function among schoolchildren. The aim of the present study was to present the association between short-term elemental carbon exposure and lung function in schoolchildren from Mexico City. 55 asthmatic and 40 non-asthmatic children were followed for an average of 22 weeks. A spirometry test was performed every 15 days during follow-up. Portable air samplers collected particulate matter onto Teflon filters. Gravimetric analysis was conducted and elemental carbon was quantified using transmission densitometry. The association between the main variables was analysed using linear mixed effects models. The mean ± sd of elemental carbon light absorption was 92.7 ± 54.7 Mm(-1). An increase of one interquartile range in the 24-h average of elemental carbon (100.93 Mm(-1)) was associated with a significant negative impact on forced expiratory volume in 1 s (FEV(1)) (-62.0 (95% CI -123.3- -1.2) mL) and forced expiratory flow at 25-75% of forced vital capacity (FVC) (FEF(25-75%)) (-111 (95% CI -228.3- -4.1) mL) among asthmatic children, equal to 3.3% and 5.5%, respectively; and on FEV(1) (-95.0 (95% CI -182.3- -8.5) mL) and FVC (-105.0 (95% CI -197.0- -13.7) mL) among non-asthmatic children. Exposure to elemental carbon resulted in an important negative effect on lung function in atopic schoolchildren, regardless of asthma status.

Download full-text PDF

Source
http://dx.doi.org/10.1183/09031936.00111410DOI Listing

Publication Analysis

Top Keywords

elemental carbon
28
lung function
16
carbon exposure
12
exposure lung
12
mexico city
8
function schoolchildren
8
non-asthmatic children
8
forced expiratory
8
elemental
7
carbon
6

Similar Publications

Ternary NASICON-Type NaVMnFe(PO)/NC@CNTs Cathode with Reversible Multielectron Reaction and Long Life for Na-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.

Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.

View Article and Find Full Text PDF

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.

View Article and Find Full Text PDF

Despite years of progress in biotechnology, altering the genetic makeup of many plant species, especially their plastids, remains challenging. The existence of a cell wall poses a significant obstacle to the effectual transportation of biomolecules. Developing efficient methods to introduce genes into plant cells and organelles without causing harm is an ongoing area of research.

View Article and Find Full Text PDF

Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production.

Appl Microbiol Biotechnol

January 2025

Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.

Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!