Multiple system atrophy is an atypical parkinsonism characterized by severe motor disabilities that are poorly levodopa responsive. Most patients develop rapid eye movement sleep behaviour disorder. Because parkinsonism is absent during rapid eye movement sleep behaviour disorder in patients with Parkinson's disease, we studied the movements of patients with multiple system atrophy during rapid eye movement sleep. Forty-nine non-demented patients with multiple system atrophy and 49 patients with idiopathic Parkinson's disease were interviewed along with their 98 bed partners using a structured questionnaire. They rated the quality of movements, vocal and facial expressions during rapid eye movement sleep behaviour disorder as better than, equal to or worse than the same activities in an awake state. Sleep and movements were monitored using video-polysomnography in 22/49 patients with multiple system atrophy and in 19/49 patients with Parkinson's disease. These recordings were analysed for the presence of parkinsonism and cerebellar syndrome during rapid eye movement sleep movements. Clinical rapid eye movement sleep behaviour disorder was observed in 43/49 (88%) patients with multiple system atrophy. Reports from the 31/43 bed partners who were able to evaluate movements during sleep indicate that 81% of the patients showed some form of improvement during rapid eye movement sleep behaviour disorder. These included improved movement (73% of patients: faster, 67%; stronger, 52%; and smoother, 26%), improved speech (59% of patients: louder, 55%; more intelligible, 17%; and better articulated, 36%) and normalized facial expression (50% of patients). The rate of improvement was higher in Parkinson's disease than in multiple system atrophy, but no further difference was observed between the two forms of multiple system atrophy (predominant parkinsonism versus cerebellar syndrome). Video-monitored movements during rapid eye movement sleep in patients with multiple system atrophy revealed more expressive faces, and movements that were faster and more ample in comparison with facial expression and movements during wakefulness. These movements were still somewhat jerky but lacked any visible parkinsonism. Cerebellar signs were not assessable. We conclude that parkinsonism also disappears during rapid eye movement sleep behaviour disorder in patients with multiple system atrophy, but this improvement is not due to enhanced dopamine transmission because these patients are not levodopa-sensitive. These data suggest that these movements are not influenced by extrapyramidal regions; however, the influence of abnormal cerebellar control remains unclear. The transient disappearance of parkinsonism here is all the more surprising since no treatment (even dopaminergic) provides a real benefit in this disabling disease.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awq379DOI Listing

Publication Analysis

Top Keywords

rapid eye
40
eye movement
40
movement sleep
40
multiple system
40
system atrophy
40
sleep behaviour
28
behaviour disorder
28
patients multiple
24
parkinson's disease
16
patients
15

Similar Publications

Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample.

View Article and Find Full Text PDF

Objectives: To assess the effectiveness of various atropine concentrations in managing myopia among children in East, South, and Southeast Asia, and to determine the most effective concentration.

Methods: A systematic literature review was conducted using PubMed, Web of Science, Cochrane Library, and EMBASE. The search was limited to articles published up to 1 June 2024, and included studies in Chinese or English.

View Article and Find Full Text PDF

Study Objectives: Polysomnography (PSG) currently serves as the benchmark for evaluating sleep disorders. Its discomfort makes long-term monitoring unfeasible, leading to bias in sleep quality assessment. Hence, less invasive, cost-effective, and portable alternatives need to be explored.

View Article and Find Full Text PDF

Introduction: Tumorous growths in the sellar region pose significant clinical challenges due to their proximity to critical visual structures such as the optic chiasm and optic nerves. Given their proximity to the optic system, these tumors are often diagnosed due to a progressive decrease in visual acuity. Thus, surgical intervention is crucial to prevent irreversible damage, as timely decompression can halt the progression of edema and subsequent optic atrophy.

View Article and Find Full Text PDF

Dexmedetomidine accelerates photoentrainment and affects sleep structure through the activation of SCN neurons.

Commun Biol

December 2024

Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

Dexmedetomidine (DexM), a highly selective α-adrenoceptor agonist, significantly reduces postoperative adverse effects, including sleep and circadian rhythm disruptions. Vasoactive intestinal peptide neurons in the suprachiasmatic nucleus (SCN) regulate the synchronization of circadian rhythms with the external environment in mammals. We investigate the effects of DexM on sleep and circadian rhythms, as well as the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!