Recently, using a training paradigm, Campbell and Agnew (2009) observed cross-operation response time savings with nonidentical elements (e.g., practice 3 + 2, test 5 - 2) for addition and subtraction, showing that a single memory representation underlies addition and subtraction performance. Evidence for cross-operation savings between multiplication and division have been described frequently (e.g., Campbell, Fuchs-Lacelle, & Phenix, 2006) but they have always been attributed to a mediation strategy (reformulating a division problem as a multiplication problem, e.g., Campbell et al., 2006). Campbell and Agnew (2009) therefore concluded that there exists a fundamental difference between addition and subtraction on the one hand and multiplication and division on the other hand. However, our results suggest that retrieval savings between inverse multiplication and division problems can be observed. Even for small problems (solved by direct retrieval) practicing a division problem facilitated the corresponding multiplication problem and vice versa. These findings indicate that shared memory representations underlie multiplication and division retrieval. Hence, memory and learning processes do not seem to differ fundamentally between addition-subtraction and multiplication-division.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1027/1618-3169/a000098 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!