Here we study the multivariate quantitative constructive approximation of real and complex valued continuous multivariate functions on a box or RN, N∈N, by the multivariate quasi-interpolation sigmoidal neural network operators. The "right" operators for our goal are fully and precisely described. This approximation is derived by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order partial derivatives. Our multivariate operators are defined by using a multidimensional density function induced by the logarithmic sigmoidal function. The approximations are pointwise and uniform. The related feed-forward neural network is with one hidden layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2011.01.003 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.
Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.
View Article and Find Full Text PDFiScience
February 2025
ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Cricket song recognition is thought to evolve through modifications of a shared neural network. However, the species has an unusual recognition pattern that challenges this view: females respond to both normal male song pulse periods and periods twice as long. Of the three minimal models tested, only a single-neuron model with an oscillating membrane could explain this unusual behavior.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, IRN.
Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.
View Article and Find Full Text PDFFront Neurorobot
January 2025
College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, Shanxi, China.
Accurate building segmentation has become critical in various fields such as urban management, urban planning, mapping, and navigation. With the increasing diversity in the number, size, and shape of buildings, convolutional neural networks have been used to segment and extract buildings from such images, resulting in increased efficiency and utilization of image features. We propose a building semantic segmentation method to improve the traditional Unet convolutional neural network by integrating attention mechanism and boundary detection.
View Article and Find Full Text PDFOphthalmol Sci
November 2024
Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
Objective: Detecting and measuring changes in longitudinal fundus imaging is key to monitoring disease progression in chronic ophthalmic diseases, such as glaucoma and macular degeneration. Clinicians assess changes in disease status by either independently reviewing or manually juxtaposing longitudinally acquired color fundus photos (CFPs). Distinguishing variations in image acquisition due to camera orientation, zoom, and exposure from true disease-related changes can be challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!