Multivariate sigmoidal neural network approximation.

Neural Netw

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA.

Published: May 2011

Here we study the multivariate quantitative constructive approximation of real and complex valued continuous multivariate functions on a box or RN, N∈N, by the multivariate quasi-interpolation sigmoidal neural network operators. The "right" operators for our goal are fully and precisely described. This approximation is derived by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order partial derivatives. Our multivariate operators are defined by using a multidimensional density function induced by the logarithmic sigmoidal function. The approximations are pointwise and uniform. The related feed-forward neural network is with one hidden layer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2011.01.003DOI Listing

Publication Analysis

Top Keywords

neural network
12
sigmoidal neural
8
multivariate
6
multivariate sigmoidal
4
network approximation
4
approximation study
4
study multivariate
4
multivariate quantitative
4
quantitative constructive
4
constructive approximation
4

Similar Publications

Recognizing drivers' sleep onset by detecting slow eye movement using a parallel multimodal one-dimensional convolutional neural network.

Comput Methods Biomech Biomed Engin

January 2025

School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.

Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.

View Article and Find Full Text PDF

Cricket song recognition is thought to evolve through modifications of a shared neural network. However, the species has an unusual recognition pattern that challenges this view: females respond to both normal male song pulse periods and periods twice as long. Of the three minimal models tested, only a single-neuron model with an oscillating membrane could explain this unusual behavior.

View Article and Find Full Text PDF

Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.

View Article and Find Full Text PDF

Accurate building segmentation has become critical in various fields such as urban management, urban planning, mapping, and navigation. With the increasing diversity in the number, size, and shape of buildings, convolutional neural networks have been used to segment and extract buildings from such images, resulting in increased efficiency and utilization of image features. We propose a building semantic segmentation method to improve the traditional Unet convolutional neural network by integrating attention mechanism and boundary detection.

View Article and Find Full Text PDF

Objective: Detecting and measuring changes in longitudinal fundus imaging is key to monitoring disease progression in chronic ophthalmic diseases, such as glaucoma and macular degeneration. Clinicians assess changes in disease status by either independently reviewing or manually juxtaposing longitudinally acquired color fundus photos (CFPs). Distinguishing variations in image acquisition due to camera orientation, zoom, and exposure from true disease-related changes can be challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!