Background: In The Netherlands, the incidence of Lyme borreliosis is on the rise. Besides its causative agent, Borrelia burgdorferi s.l., other potential pathogens like Rickettsia, Babesia and Ehrlichia species are present in Ixodes ricinus ticks. The risk of disease associated with these microorganisms after tick-bites remains, however, largely unclear. A prospective study was performed to investigate how many persons with tick-bites develop localized or systemic symptoms and whether these are associated with tick-borne microorganisms.

Results: In total, 297 Ixodes ricinus ticks were collected from 246 study participants who consulted a general practitioner on the island of Ameland for tick bites. Ticks were subjected to PCR to detect DNA of Borrelia burgdorferi s.l., Rickettsia spp., Babesia spp. or Ehrlichia/Anaplasma spp.. Sixteen percent of the collected ticks were positive for Borrelia burgdorferi s.l., 19% for Rickettsia spp., 12% for Ehrlichia/Anaplasma spp. and 10% for Babesia spp.. At least six months after the tick bite, study participants were interviewed on symptoms by means of a standard questionnaire. 14 out of 193 participants (8.3%) reported reddening at the bite site and 6 participants (4.1%) reported systemic symptoms. No association between symptoms and tick-borne microorganisms was found. Attachment duration ≥24 h was positively associated with reddening at the bite site and systemic symptoms. Using logistic regression techniques, reddening was positively correlated with presence of Borrelia afzelii, and having 'any symptoms' was positively associated with attachment duration.

Conclusion: The risk of contracting acute Lyme borreliosis, rickettsiosis, babesiosis or ehrlichiosis from a single tick bite was <1% in this study population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050846PMC
http://dx.doi.org/10.1186/1756-3305-4-17DOI Listing

Publication Analysis

Top Keywords

tick bite
12
borrelia burgdorferi
12
systemic symptoms
12
lyme borreliosis
8
ixodes ricinus
8
ricinus ticks
8
study participants
8
rickettsia spp
8
babesia spp
8
ehrlichia/anaplasma spp
8

Similar Publications

Crimean-Congo hemorrhagic fever (CCHF) is indeed to be considered as one of the most significant vector-borne diseases globally. The virus responsible for CCHF can persist in various animals and lead to severe infections in humans. Ticks of the family are the acknowledged vectors of CCHF virus (CCHFV) transmission to humans.

View Article and Find Full Text PDF

Background And Objectives: Salivary glands proteins but not glycoconjugates have been previously studied in mosquito vectors of human diseases. Glycoconjugates from salivary gland-derived proteins from human-feeding tick vectors can elicit hypersensitivity reactions which may also occur with mosquito bites. Protein glycoconjugate in salivary glands of the principal arboviral vector Aedes aegypti and the rapidly spreading malaria vector Anopheles stephensi were therefore investigated.

View Article and Find Full Text PDF

is a vector of several human pathogens in the United States, including the cause of Lyme disease, and Powassan virus (POWV), an emerging cause of severe encephalitis. Skin biopsies from tick bite sites are frequently collected and tested for the presence of spirochetes ( spp.), which remain elusive.

View Article and Find Full Text PDF

Serological evidence of Crimean-Congo haemorrhagic fever in domestic animals from eight regions of Namibia.

Acta Trop

January 2025

Dept. of Animal Medicine, Production and Health, University of Padova, Legnaro, viale dell'Università 16, 35020, Italy. Electronic address:

Crimean-Congo haemorrhagic fever (CCHF) is a viral zoonotic disease endemic to regions of Africa, the Balkans, the Middle East, and Asia, with increasing reports of cases in southern Europe. Human transmission occurs primarily through the bite of infected ticks and by body fluids from infected human. Crimean-Congo haemorrhagic fever virus (CCHFV) affects a broad host range, including both domestic and wild vertebrates.

View Article and Find Full Text PDF

The tick-borne encephalitis virus is a pathogen endemic to northern Europe and Asia, transmitted through bites from infected ticks. It is a member of the family and possesses a positive-sense, single-stranded RNA genome encoding a polypeptide that is processed into seven non-structural and three structural proteins, including the envelope (E) protein. The glycosylation of the E protein, involving a single N-linked glycan at position N154, plays a critical role in viral infectivity and pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!