We present a probabilistic framework for interpreting structure-based virtual screening that returns a quantitative likelihood of observing bioactivity and can be quantitatively combined with ligand-based screening methods to yield a cumulative prediction that consistently outperforms any single screening metric. The approach has been developed and validated on more than 30 different protein targets. Transforming structure-based in silico screening results into robust probabilities of activity enables the general fusion of multiple structure- and ligand-based approaches and returns a quantitative expectation of success that can be used to prioritize (or deprioritize) further discovery activities. This unified probabilistic framework offers a paradigm shift in how docking and scoring results are interpreted, which can enhance early lead-finding efforts by maximizing the value of in silico computational tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm1013677 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!