AI Article Synopsis

  • The study investigates how different gymnastics mats affect shock absorption and stability during landings, particularly in relation to gymnast plantar pressures and subjective perceptions.
  • Six mats were tested using mechanical drop tests and assessments from 15 expert gymnasts, revealing that different mat constructions significantly altered plantar pressures.
  • While there was a correlation between plantar pressures and mat shock absorption characteristics, subjective perceptions did not provide clear distinctions among the mats, indicating the need for further research integrating kinematic analysis to better understand gymnast-mat interactions.

Article Abstract

Shock absorption and stability during landings is provided by both, gymnast ability and mat properties. The aims of this study were to determine the influence of different mat constructions on their energy absorption and stability capabilities, and to analyse how these properties affect gymnast's plantar pressures as well as subjective mat perception during landing. Six mats were tested using a standard mechanical drop test. In addition, plantar pressures and subjective perception during landing were obtained from 15 expert gymnasts. The different mats influenced plantar pressures and gymnasts' subjective perception during landing of gymnasts. Significant correlations between plantar pressures at the medial metatarsal and lateral metatarsal zones of the gymnasts' feet with the different shock absorption characteristics of the mats were found. However, subjective perception tests were not able to discriminate mat functionality between the six mats as no significant correlations between the mechanical mat properties with the subjective perception of these properties were found. This study demonstrated that plantar pressures are a useful tool for discriminating different landing mats. Using similar approaches, ideally including kinematics as well, could help us in our understanding about the influences of different mats upon gymnast-mat interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14763141.2010.537675DOI Listing

Publication Analysis

Top Keywords

plantar pressures
20
subjective perception
16
mat properties
12
perception landing
12
shock absorption
8
absorption stability
8
landing mats
8
plantar
6
mat
6
mats
6

Similar Publications

Background: This study investigated the effect of various offloading devices commonly used for the management of diabetic foot ulcerations on peak plantar pressure and pressure-time integral of the contralateral limb.

Methods: A quantitative, randomised and within-subject repeated measures study was conducted in an outpatient gait laboratory. Outpatients with unilateral diabetic foot ulcers and adequate perfusion to the lower limb without an intrinsic limb-length discrepancy who were able to walk were recruited for the study.

View Article and Find Full Text PDF

Unlocking the multidimensionality of plantar pressure measurements for the evaluation of footwear in people with diabetes.

J Biomech

January 2025

Department of Rehabilitation Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9 1105 AZ, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands.

The offloading effectiveness of custom-made footwear for people with diabetes is assessed using plantar pressure measurements. While such pressure data is multidimensional, it is mostly analyzed using a scalar - maximum peak plantar pressure (PMax). We aimed to investigate the associations between multiple peak plantar pressure parameters for footwear assessment and determine whether this assessment depends on the chosen parameter.

View Article and Find Full Text PDF

An overview of plantar pressure distribution measurements and its applications in health and medicine.

Gait Posture

December 2024

Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Informatics, UMC-Location AMC, University of Amsterdam, Amsterdam, the Netherlands. Electronic address:

Background: Measuring plantar pressure distribution is critical for understanding foot-ground interactions, providing valuable insights for diagnosing and managing various health conditions. Since its initial studies in 1984, this field has garnered increasing attention within healthcare and medicine due to its broad applications across clinical settings.

Research Question: How does measuring plantar pressure distribution affect healthcare outcomes across different age groups and health conditions?

Methods: This review thoroughly explores the literature concerning plantar pressure distribution, focusing on studies conducted from 1984 onwards.

View Article and Find Full Text PDF

Effectiveness of Using a Digital Wearable Plantar Pressure Device to Detect Muscle Fatigue: Within-Subject, Repeated Measures Experimental Design.

JMIR Hum Factors

January 2025

Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Road, Zhongli District, Toayuan City, 32023, Taiwan, 886 32564507.

Background: Muscle fatigue, characterized by reduced force generation during repetitive contractions, impacts older adults doing daily activities and athletes during sports activities. While various sensors detect muscle fatigue via muscle activity, biochemical markers, and kinematic parameters, a real-time wearable solution with high usability remains limited. Plantar pressure monitoring detects muscle fatigue through foot loading changes, seamlessly integrating into footwear to improve the usability and compliance for home-based monitoring.

View Article and Find Full Text PDF

Real-Time Freezing of Gait Prediction and Detection in Parkinson's Disease.

Sensors (Basel)

December 2024

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Freezing of gait (FOG) is a walking disturbance that can lead to postural instability, falling, and decreased mobility in people with Parkinson's disease. This research used machine learning to predict and detect FOG episodes from plantar-pressure data and compared the performance of decision tree ensemble classifiers when trained on three different datasets. Dataset 1 ( = 11) was collected in a previous study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!