In spite of differences in etiology, viral haemorrhagic diseases share similarities in their pathogenesis. Characteristic for these diseases are thrombocytopenia, petechia and increased vascular leakage. Most lesions can be attributed to cytokine-mediated interactions triggered by infected and activated monocytes and macrophages, rather than by virus-induced direct cell damage. Causative agents of viral hemorrhagic diseases are enveloped RNA viruses. In most cases, they are transmitted to humans from their animal hosts by rodents or arthropod vectors (Arboviruses). Due to the clinical picture, the acute lethal form of classical swine fever (CSF) is also considered as a viral haemorrhagic disease. CSF is caused by an RNA virus in the family Flaviviridae, and members of the Suidae family are the only ones clinically affected. It is a highly contagious, therefore notifiable disease. In contrast to other viral hamorrhagic diseases, it is mainly transmitted oro-nasally by contact with infected pigs, or by contaminated items (semen, swill feed, clothing). The present survey summarizes analogies between classical representatives of viral haemorrhagic fevers, and recapitulates current knowledge concerning the pathogenesis of classical swine fever.
Download full-text PDF |
Source |
---|
AIDS Res Ther
January 2025
Human Sciences Research Council, Pretoria, South Africa.
Background: Early detection and initiation of care is crucial to the survival and long-term well-being of children living with HIV (CLHIV). However, there remain challenges regarding early testing and linking of CLHIV for early treatment. This study examines the progress made towards achieving the 95-95-95 HIV indicators and associated factors among CLHIV < 15 years in South Africa.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
Background: Low blood absolute lymphocyte count (ALC) may predict severe COVID-19 outcomes. Knowledge gaps remain regarding the relationship of ALC trajectory with clinical outcomes and factors associated with lymphopenia.
Methods: Our post hoc analysis of the Therapeutics for Inpatients with COVID-19 platform trial utilized proportional hazards models to assess relationships between Day (D) 0 lymphopenia (ALC < 0.
Vet Res Commun
January 2025
Brooksco Dairy, L.L.C. Quitman, Quitman, 31643-9403, GA, USA.
The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.
View Article and Find Full Text PDFClin Exp Med
January 2025
Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
Purpose: STING (stimulator of interferon genes) is involved in viral and bacterial defense through interferon pathway and innate immunity. Increased susceptibility to infection is a common manifestation of multiple myeloma (MM). Thus, we aimed to explore the clinical significance and possible mechanism of STING in MM.
View Article and Find Full Text PDFNat Biotechnol
January 2025
Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!