Molecular genetics of supernumerary tooth formation.

Genesis

Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115, USA.

Published: April 2011

Despite advances in the knowledge of tooth morphogenesis and differentiation, relatively little is known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. A small number of supernumerary teeth may be a common developmental dental anomaly, while multiple supernumerary teeth usually have a genetic component and they are sometimes thought to represent a partial third dentition in humans. Mice, which are commonly used for studying tooth development, only exhibit one dentition, with very few mouse models exhibiting supernumerary teeth similar to those in humans. Inactivation of Apc or forced activation of Wnt/β(catenin signalling results in multiple supernumerary tooth formation in both humans and in mice, but the key genes in these pathways are not very clear. Analysis of other model systems with continuous tooth replacement or secondary tooth formation, such as fish, snake, lizard, and ferret, is providing insights into the molecular and cellular mechanisms underlying succesional tooth development, and will assist in the studies on supernumerary tooth formation in humans. This information, together with the advances in stem cell biology and tissue engineering, will pave ways for the tooth regeneration and tooth bioengineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188466PMC
http://dx.doi.org/10.1002/dvg.20715DOI Listing

Publication Analysis

Top Keywords

tooth formation
20
supernumerary tooth
16
supernumerary teeth
12
tooth
11
mechanisms underlying
8
multiple supernumerary
8
humans mice
8
tooth development
8
formation humans
8
supernumerary
7

Similar Publications

Clinical Effectiveness of Biomaterials in Indirect Pulp Therapy Treatment of Young Permanent Molars with Deep Carious Lesions: A Case-Control Study.

Int J Clin Pediatr Dent

November 2024

Department of Pediatric and Preventive Dentistry, Shree Guru Gobind Singh Tricentenary Dental College, Hospital and Research Institute, Gurugram, Haryana, India.

Aim: The present case-control study was planned to assess the comparative efficacy of resin-modified calcium silicate, resin-modified glass ionomer, and Dycal as pulp capping agents in indirect pulp therapy for deeply carious young permanent molars.

Materials And Methods: Thirty deeply carious young posterior teeth were treated by indirect pulp therapy. During the treatment, the cavity floor was lined with TheraCal or resin-modified glass ionomer cement (RMGIC) in the study group and with Dycal (control group) followed by GC IX and composite restoration.

View Article and Find Full Text PDF

Radicular cysts are rarely present in the primary dentition because of the distinct biological cycle of primary teeth. Cyst formation in children may cause bony expansion and resorption, malposition, delayed eruption, enamel defects, or damage to the developing permanent successors. Various treatment modalities for the management of radicular cysts have been reported in the literature.

View Article and Find Full Text PDF

Survival of periodontal ligament myofibroblasts after short-term mechanical strain in rats and in vitro: Could myofibroblasts contribute to orthodontic relapse?

Arch Oral Biol

January 2025

Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud university medical center, Philips van Leydenlaan 25, Nijmegen 6525 EX, the Netherlands. Electronic address:

Objectives: To investigate in vivo whether myofibroblasts formed in the PDL after exposure to short-term high experimental orthodontic forces in rats survive. To study in vitro whether human PDL fibroblasts can differentiate into myofibroblasts and survive when chemical or mechanical stimuli are removed.

Design: Nine 6-week-old male Wistar rats were used in this experiment.

View Article and Find Full Text PDF

Histological and histomorphometric evaluation of natural bovine bone substitute with hyaluronate in socket preservation-a report of three cases.

J Mater Sci Mater Med

January 2025

Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia.

Tooth extraction is physiologically followed by resorption of alveolar bone. Surgical method which aims to minimise this reduction in alveolar bone with a goal to provide enough bone volume for dental implant insertion is called socket preservation. The purpose of this article was to asses clinical, histomorphometric and histological results of socket preservation conducted with natural bovine bone substitute with hyaluronate.

View Article and Find Full Text PDF

Background: Silver diamine fluoride (SDF) has gained popularity for its caries-arresting properties, yet its tendency to cause esthetic concerns due to black-staining limits its widespread acceptance.

Aim: The aim of the study was to evaluate and compare the shear bond strength of Activa BioActive and Giomer restorative material with different protocols of SDF pretreatment on carious dentin.

Materials And Methods: Ninety-two extracted teeth were decoronated at the cementoenamel junction, sectioned 1 mm into dentin, mounted in acrylic resin and randomly divided into four ( = 8) control and six ( = 10) experimental groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!