Bone tissue for transplantation therapies is in high demand in clinics. Osteodegenerative diseases, in particular, osteoporosis and osteoarthritis, represent serious public health issues affecting a respectable proportion of the elderly population. Furthermore, congenital indispositions from the spectrum of craniofacial malformations such as cleft palates and systemic disorders including osteogenesis imperfecta are further increasing the need for bone tissue. Additionally, the reconstruction of fractured bone elements after accidents and the consumption of bone parts during surgical tumor excisions represent frequent clinical situations with deficient availability of healthy bone tissue for therapeutic transplantations. Epigenetic reprogramming represents a powerful technology for the generation of healthy patient-specific cells to replace or repair diseased or damaged tissue. The recent generation of induced pluripotent stem cells (iPSCs) is probably the most promising among these approaches dominating the literature of current stem cell research. It allows the generation of pluripotent stem cells from adult human skin cells from which potentially all cell types of the human body could be obtained. Another technique to produce clinically interesting cell types is direct lineage reprogramming (LR) with the additional advantage that it can be applied directly in vivo to reconstitute a damaged organ. Here, we want to present the two technologies of iPSCs and LR, to outline the current states of research, and to discuss possible strategies for their implementation in bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/stem.611 | DOI Listing |
Cytotechnology
February 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151001 India.
Gaucher's disease (GD) is a rare autosomal recessive genetic disorder caused by mutations in the gene. Mutations in the gene lead to the deficiency of glucocerebrosidase, an enzyme that helps in the breakdown of glucosylceramide (GlcCer) into ceramide and glucose. The lack of the enzyme causes GlcCer accumulation in macrophages, resulting in various phenotypic characteristics of GD.
View Article and Find Full Text PDFBio Protoc
December 2024
Department of Neurology, University of Minnesota, Twin Cities, Minneapolis, MN, USA.
The advent of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing has marked a significant advancement in genetic engineering technology. However, the editing of induced pluripotent stem cells (iPSCs) with CRISPR presents notable challenges in ensuring cell survival and achieving high editing efficiency. These challenges become even more complex when considering the specific target site.
View Article and Find Full Text PDFWorld J Stem Cells
December 2024
Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
Extracellular vesicles (EVs) are cell-to-cell interaction tools that are attracting increasing interest in the literature in two opposing areas. In addition to their role in physiological development, there is growing evidence of their involvement in healing and protective processes. However, EVs also mediate pathological conditions, particularly contributing to the progression of several chronic diseases, such as neurodegenerative diseases.
View Article and Find Full Text PDFWorld J Stem Cells
December 2024
Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China.
In this editorial, we have taken an in-depth look at the article published by Wan . The study showed that preconditioning mesenchymal stem cells (MSCs) protected them against programmed cell death, and increased their survival rate and therapeutic potential. Autophagy, a type of programmed cell death, is a major intracellular degradation and recycling pathway that is crucial for maintaining cellular homeostasis, self-renewal, and pluripotency.
View Article and Find Full Text PDFInt J Stem Cells
December 2024
Catholic iPSCs Research Center, CiSTEM Laboratory, Department of Medical Sciences, Graduate School The Catholic University of Korea, Seoul, Korea.
Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!