Bacterial community structure of heavy metal rich- uranium ores and surrounding soils was explored using 16S rRNA gene based clone library analysis and denaturing gradient gel electrophoresis (DGGE) to provide baseline microbial diversity data on autochthonous communities. Sequence analysis of major ribotypes and/or DGGE bands revealed Proteobacteria and Acidobacteria as the two most frequently present bacterial phyla across the samples, although relative abundance of each phyla and identity of their members at lower taxonomic level showed marked difference. Gammaproteobacteria (Pseudomonas and Escherichia) was most abundant in U-ore samples along with the lineages of β-Proteobacteria (Burkholderia and Janthinobacterium), α-Proteobacteria (Brevundimonas), Bacteroidetes (Spingobacterium), Firmicutes (Peptoniphilus), Actinobacteria (Corynebacterium), uncultured -Acidobacteria, -Chloroflexi and -Cyanobacterium. In contrast to this soil communities were represented by mixed populations predominated by uncultured Acidobacteria along with Gammaproteobacteria (Succinivibrio, Cellovibrio and Legionella), β-Proteobacteria (Rhodocyclus), α-Proteobacteria (Methylocystis and Phenylobacterium), δ-Proteobacteria, unclassified bacteria, uncultured Bacteroidetes, Firmicutes (Bacillus), Cyanobacteria (Scytonema), Actinobacteria (Actinomadura) and candidate division TM7. Principle Component Analyis (PCA) of geochemical data and UPGMA cluster analysis of DGGE profiles were in close agreement showing characteristic relatedness of samples obtained from either ores or soils. Our analysis indicated that soils surrounding the ore deposit bear specific geochemical as well as microbiologial characteristics distinct from the ore deposit and therefore these data obtained at the onset of mining could serve as a baseline of information to gauge the subsequent environmnetal impact of U-mining.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2011.535433DOI Listing

Publication Analysis

Top Keywords

uranium ores
8
ores surrounding
8
surrounding soils
8
ore deposit
8
molecular analysis
4
analysis bacterial
4
bacterial communities
4
communities uranium
4
soils
4
soils banduhurang
4

Similar Publications

Tracing the impact of former uranium mine sites using stable Pb isotopes: A review.

J Environ Radioact

December 2024

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, Fontenay-aux-Roses, F-92260, France. Electronic address:

Tracing pollution originating from uranium (U) mining activities is a key challenge due to the diversity of U sources (geochemical background versus U-ore) and its daughter radionuclides. Among the available tracers that can be used to highlight the impact of these activities on the environment, the application of Pb stable isotopes is relevant. This paper is an overview of the use of Pb isotopes for tracing U-mining impacts due to mining and milling activities.

View Article and Find Full Text PDF

Radiological risk and impact on soil microbial diversity of radionuclides in agricultural topsoils downstream of a decommissioned hydrometallurgical uranium plant.

J Environ Manage

November 2024

MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Electronic address:

Containing only low levels of U-bearing minerals, U ores often have to undergo hydrometallurgical processing for the separation of other minerals. Hydrometallurgical operations, even after being shut down, could pose radiological risk to the ecosystem and human health due to the radionuclide contamination of surrounding environmental media. This study investigated the contamination of radionuclides in the agricultural topsoils downstream of a decommissioned hydrometallurgical U plant in southern China, and assessed the corresponding radiological risk and evaluated its impact on soil microbial communities.

View Article and Find Full Text PDF

The South Eastern Desert (SED) of Egypt is one of the most promising areas in Egypt; it is widely explored for exploring the rare earth elements (REEs) and uranium-bearing ores. It is a main part of the Arabian-Nubian Shield (ANS). Therefore, the present study concerns with Sikait-Nugrus area as one of the most prolific sites in this region.

View Article and Find Full Text PDF

Unveiling the origins and transport processes of radioactive pollutants downstream from a former U-mine site using isotopic tracers and U-238 series disequilibrium.

J Hazard Mater

July 2024

Institut de Radioprotection et de Sûreté Nucléaire, PSE-ENV/SPDR/LT2S, LETIS, USDR, PSE-SANTE/SESANE/LRSI, Fontenay-aux-Roses F-92260, France. Electronic address:

High U concentrations (reaching up to 14,850 mg ⋅ kg), were determined in soils and sediments of a wetland downstream of a former U mine in France. This study aims to identify the origin of radioactive contaminants in the wetland by employing Pb isotope fingerprinting, (U/U) disequilibrium, SEM, and SIMS observations. Additionally, information about U and Ra transport processes was studied using U-238 series disequilibrium.

View Article and Find Full Text PDF

The long-term management of tailings from former uranium (U) mines requires an in-depth understanding of the hydrogeological processes and water flow paths. In France, most of the legacy U mines are located in fractured crystalline (plutonic) rocks, where the intrinsic subsurface heterogeneity adds to the uncertainties about the former extraction and milling activities and the state of the mine when production was ceased. U ores were mainly processed by sulfuric acid leaching, leading to high-sulfate-content mill tailings now contained in several tailing storage facilities (TSFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!