Unlabelled: Clinicians tend to make reductions in glass ionomer power/liquid (P/L) ratios since some materials are difficult to mix and flow into small cavities, grooves or pits. In general, changing the P/L ratio decreases the physical and mechanical properties of conventional glass ionomer cements (GICs) and resin modified glass ionomer cements (RMGICs), but alterations seem to depend on their composition.
Objective: To determine the influence of P/L ratio on the radiodensity and diametral tensile strength (DTS) of glass ionomer cements.
Material And Methods: There were 2 factors under study: P/L ratio (manufacturer's recommended P/L ratio and a 50% reduced P/L ratio), and materials (Vitro Molar, Vitro Fil, Vitro Cem conventional GICs and Vitro Fil LC, Ortho Glass LC RMGICs. Five 1-mm-thick samples of each material-P/L ratio were produced for radiodensity evaluation. Samples were x-ray exposed onto Digora phosphor plate and radiodensity was obtained using the software Digora for Windows 2.5 Rev 0. For DTS, five (4.0 x 8.0 mm) cylinder samples of each material were tested (0.5 mm/min). Data were subjected to one- and two-way ANOVA (5x2) followed by Tukey's HSD test, or Kruskal-Wallis and Dunn's method. For paired comparisons, t-test or Mann-Whitney test were used (α=0.05).
Results: There was a significant interaction (P=0.001) for the studied factors (materials vs. P/L ratio). Reduced P/L ratio resulted in significantly lower DTS for the RMGICs, but radiodensity was affected for all materials (P<0.05).
Conclusions: Reduced P/L ratio affected properties of the tested glass ionomer cements. RMGICs were more susceptible to lower values of DTS, but radiodensity decreased for all materials following P/L ratio reduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881762 | PMC |
http://dx.doi.org/10.1590/s1678-77572010000600008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!