From February 15th to April 15th 2009, a period characterised by two episodes of Saharan dust outbreaks in Italy, particulate matter (PM) samples were collected at two stations (urban and suburban) in Rome. Some samples were selected and analysed using the SEM-EDS technique to characterise PM, focussing especially on the mineral contribution. Samples were representative both of days affected by Saharan dust episodes and days without this contribution. Cluster analysis allowed the attribution of each of about 67,000 analysed particles to one of the seven main statistical groups based on their composition. Characteristics of the particulate components identified using SEM-EDS analysis were verified by PIXE analysis carried out on filters collected in a suburban area. Ultimately, the contribution of crustal particles was revealed to be consistently high, highlighting the importance of local and regional mineral contributions, as well as those of Saharan origin. Therefore, quantifying all mineral contributions to resuspended particulate could lead to significant reductions of the PM level also on days not influenced by Saharan dust, thus limiting conditions when PM₁₀ daily limit value (DLV) established by European legislation is exceeded.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0em00535e | DOI Listing |
Sci Rep
December 2024
Air Quality Department, Czech Hydrometeorological Institute, Na Šabatce 2050/17, Praha, 143 06, Czech Republic.
In late March to early April 2024, an unusually high amount of sand dust was wind-blown to Europe from the Sahara Desert. Most of mainland Europe was affected by these sand dust particles. As a result, Central Europe experienced an exceptionally high increase in air pollution.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21007 Huelva, Spain; Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, E21007, Huelva, Spain.
Emissions of metals and metalloids as a result of industrial processes, entail a great risk to human health. A high time resolution study on arsenic levels in PM in the city of Huelva (SW Spain) was carried out between September 2021 and September 2022. Hourly data obtained with a near real-time technique based on X-ray fluorescence were inter-compared with other offline analytical instrumentation.
View Article and Find Full Text PDFPLoS One
December 2024
Group of Atmospheric Optics (GOA-UVa), Universidad de Valladolid, Valladolid, Spain.
This work introduces CAECENET, a new system capable of automatically retrieving columnar and vertically-resolved aerosol properties running the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm using sun-sky photometer (aerosol optical depth, AOD; and sky radiance measurements) and ceilometer (range corrected signal; RCS) data as input. This method, so called GRASPpac, is implemented in CAECENET, which assimilates sun-sky photometers data from CÆLIS database and ceilometer data from ICENET database (Iberian Ceilometer Network). CAECENET allows for continuous and near-real-time monitoring of both vertical and columnar aerosol properties.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India. Electronic address:
Extreme air pollution poses global health and environmental threats, necessitating robust policy interventions. This study first analyses the surface mass concentration of major aerosols (such as black carbon, organic carbon, dust, sea salts, and sulphates) to estimate global PM concentrations from 1980 to 2023. The developed model-estimated PM database was validated against data from 526 cities worldwide, showing strong accuracy, with RMSE, r, and R values of 7.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal.
This study explores the application of low-cost sensor networks for air quality monitoring in Cabo Verde islands, utilizing Clarity Node-S sensors to measure fine particulate matter with diameters equal to or smaller than 10 µm (PM10) and 2.5 µm (PM2.5) and nitrogen dioxide (NO) gasses, across various locations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!