Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Soft x-ray projection lithography (SXPL) is an attractive technique for the fabrication of high-speed, high-density integrated circuits. In an SXPL stepper, the x-ray imaging mirrors consist of multilayer coatings deposited onto high precision substrates. The stepper is intended to fabricate ultra-high spatial-resolution structures with a minimum feature size of <0.1 μm. To achieve this resolution, the imaging mirrors must maintain a very precise surface figure while being exposed to x radiation. Failure to achieve and maintain the mirror surface figure will distort the wavefront propagating through the imaging system and will degrade system resolution. The required surface figure accuracy for each imaging mirror depends upon the required resolution, the wavelength, and the optical design. For conventional SXPL stepper designs, the total (peak-to-valley) surface figure error budget per mirror is approximately ±1 nm. Due to material properties at soft x-ray wavelengths and practical fabrication considerations, x-ray multilayer mirrors have limited reflectivities. A fraction of the incident x radiation is absorbed in the multilayer coating. This absorbed radiation constitutes a thermal load on the mirror, thereby distorting its shape and compromising the accuracy of its surface figure. In this paper, we analyze the thermally induced distortion on the imaging optics and conclude that the maximum allowable thermal distortion limits the maximum allowable x-ray power transported to the wafer and limits the minimum acceptable multilayer mirror reflectivity. The penalty for either insensitive x-ray resists or inefficient mirror reflectivity is a decrease in system throughput which cannot be compensated with increased source power either collected by condenser optics or generated by the source.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/XST-1993-4301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!