During symbiotic nitrogen fixation (SNF), the nodule becomes a strong sink for photosynthetic carbon. Here, it was studied whether nodule dark CO(2) fixation could participate in a mechanism for CO(2) recycling through C(4)-type photosynthesis. Differences in the natural δ(13)C abundance between Lotus japonicus inoculated or not with the N-fixing Mesorhizobium loti were assessed. (13)C labelling and gene expression of key enzymes of CO(2) metabolism were applied in plants inoculated with wild-type or mutant fix(-) (deficient in N fixation) strains of M. loti, and in non-inoculated plants. Compared with non-inoculated legumes, inoculated legumes had higher natural δ(13)C abundance and total C in their hypergeous organs and nodules. In stems, (13)C accumulation and expression of genes coding for enzymes of malate metabolism were greater in inoculated compared with non-inoculated plants. Malate-oxidizing activity was localized in stem xylem parenchyma, sieve tubes, and photosynthetic outer cortex parenchyma of inoculated plants. In stems of plants inoculated with fix(-) M. loti strains, (13)C accumulation remained high, while accumulation of transcripts coding for malic enzyme isoforms increased. A potential mechanism is proposed for reducing carbon losses during SNF by the direct reincorporation of CO(2) respired by nodules and the transport and metabolism of C-containing metabolites in hypergeous organs.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/err009DOI Listing

Publication Analysis

Top Keywords

lotus japonicus
8
natural δ13c
8
δ13c abundance
8
plants inoculated
8
non-inoculated plants
8
compared non-inoculated
8
hypergeous organs
8
13c accumulation
8
inoculated
6
plants
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!