End-tidal carbon dioxide tension (Pet(CO(2))) is reduced during an orthostatic challenge, during heat stress, and during a combination of these two conditions. The importance of these changes is dependent on Pet(CO(2)) being an accurate surrogate for arterial carbon dioxide tension (Pa(CO(2))), the latter being the physiologically relevant variable. This study tested the hypothesis that Pet(CO(2)) provides an accurate assessment of Pa(CO(2)) during the aforementioned conditions. Comparisons between these measures were made: 1) after two levels of heat stress (N = 11); 2) during combined heat stress and simulated hemorrhage [via lower-body negative pressure (LBNP), N = 8]; and 3) during an end-tidal clamping protocol to attenuate heat stress-induced reductions in Pet(CO(2)) (N = 7). Pet(CO(2)) and Pa(CO(2)) decreased during heat stress (P < 0.001); however, there was no group difference between Pa(CO(2)) and Pet(CO(2)) (P = 0.36) nor was there a significant interaction between thermal condition and measurement technique (P = 0.06). To verify that this nonsignificant trend for the interaction was not due to a type II error, Pet(CO(2)) and Pa(CO(2)) at three distinct thermal conditions were also compared using paired t-tests, revealing no difference between Pa(CO(2)) and Pet(CO(2)) while normothermic (P = 0.14) and following a 1.0 ± 0.2°C (P = 0.21) and 1.4 ± 0.2°C (P = 0.28) increase in internal temperature. During LBNP while heat stressed, measures of Pet(CO(2)) and Pa(CO(2)) were similar (P = 0.61). Likewise, during the end-tidal carbon dioxide clamping protocol, the increases in Pet(CO(2)) (7.5 ± 2.8 mmHg) and Pa(CO(2)) (6.6 ± 3.4 mmHg) were similar (P = 0.31). These data indicate that mean Pet(CO(2)) reflects mean Pa(CO(2)) during the evaluated conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075081PMC
http://dx.doi.org/10.1152/ajpregu.00784.2010DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
20
dioxide tension
16
heat stress
16
end-tidal carbon
12
petco2 paco2
12
petco2
11
paco2
9
arterial carbon
8
simulated hemorrhage
8
petco2 accurate
8

Similar Publications

Background: Objective indices of functional capacity in patients with diabetic cardiomyopathy and stage B heart failure (HF) have not been comprehensively defined. We sought to characterize the cardiopulmonary exercise characteristics of individuals with diabetic cardiomyopathy at high risk for overt HF.

Methods: The relationships from cardiopulmonary exercise testing with clinical and laboratory characteristics of participants with diabetic cardiomyopathy were evaluated using baseline data from the ARISE-HF trial (Aldose Reductase Inhibition for Stabilization of Exercise Capacity in Heart Failure).

View Article and Find Full Text PDF

Synchronously degradation of biogas slurry and decarbonization of biogas using microbial fuel cells.

J Environ Sci Health A Tox Hazard Subst Environ Eng

January 2025

School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China.

Two-chamber microbial fuel cell (MFC) with biogas slurry (BS) of corn stover as the anode substrate and as the cathode substrate was investigated to solve the problem of the accumulation of wastewater generated from biogas plants and to achieve low-cost separation of CO from biogas. A simple two-compartment MFC was constructed using biocatalysis and inexpensive materials without expensive catalysts. The performance of MFC (X1-W, Y1-W, Z1-W) with different biogas solution concentrations as anode substrate and MFC (X2-C, Y2-C, Z2-C) with as biocathode were compared, respectively.

View Article and Find Full Text PDF

Deciphering the Dynamic Interplay between Rhizobacteria and Root Exudates via Cerium Oxide Nanomaterials Modulation for Promoting Soybean Yield and Quality.

J Agric Food Chem

January 2025

Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.

The interplay between root exudates and rhizobacteria is essential for enhancing agricultural productivity. Herein, the impacts of cerium dioxide nanomaterials (CeO NMs) on these interactions in soybean plants were investigated. Following 3-5 weeks of exposure to 5 mg·kg CeO NMs, the composition of root exudates changed over time, with isoflavone levels increasing by 6.

View Article and Find Full Text PDF

Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria.

Nat Chem Biol

January 2025

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.

View Article and Find Full Text PDF

The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!