Herpes simplex virus 1 (HSV-1) is a common human pathogen that causes lifelong latent infection of sensory neurons. Non-nucleoside inhibitors that can limit HSV-1 recurrence are particularly useful in treating immunocompromised individuals or cases of emerging acyclovir-resistant strains of herpesvirus. We report that chebulagic acid (CHLA) and punicalagin (PUG), two hydrolyzable tannins isolated from the dried fruits of Terminalia chebula Retz. (Combretaceae), inhibit HSV-1 entry at noncytotoxic doses in A549 human lung cells. Experiments revealed that both tannins targeted and inactivated HSV-1 viral particles and could prevent binding, penetration, and cell-to-cell spread, as well as secondary infection. The antiviral effect from either of the tannins was not associated with induction of type I interferon-mediated responses, nor was pretreatment of the host cell protective against HSV-1. Their inhibitory activities targeted HSV-1 glycoproteins since both natural compounds were able to block polykaryocyte formation mediated by expression of recombinant viral glycoproteins involved in attachment and membrane fusion. Our results indicated that CHLA and PUG blocked interactions between cell surface glycosaminoglycans and HSV-1 glycoproteins. Furthermore, the antiviral activities from the two tannins were significantly diminished in mutant cell lines unable to produce heparan sulfate and chondroitin sulfate and could be rescued upon reconstitution of heparan sulfate biosynthesis. We suggest that the hydrolyzable tannins CHLA and PUG may be useful as competitors for glycosaminoglycans in the management of HSV-1 infections and that they may help reduce the risk for development of viral drug resistance during therapy with nucleoside analogues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126266PMC
http://dx.doi.org/10.1128/JVI.01492-10DOI Listing

Publication Analysis

Top Keywords

hydrolyzable tannins
12
chebulagic acid
8
herpes simplex
8
simplex virus
8
cell-to-cell spread
8
hsv-1
8
hsv-1 glycoproteins
8
chla pug
8
heparan sulfate
8
tannins
5

Similar Publications

Preparation and stability of chebulagic acid and chebulinic acid from Terminalia chebula and their biological activity.

Pak J Pharm Sci

January 2025

College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China/Province Multi-Component Chinese Medicine Engineering Technology Research Center of Liaoning, Dalian, China/Modern Traditional Chinese Medicine Research and Engineering Laboratory of Liaoning, Dalian, China.

Chebulagic acid and chebulinic acid are the two tannin compounds with the highest content in Terminalia chebula, they were separated by ODS column eluted with 20% methanol and 35% methanol, respectively. The compounds were identified by comparing the data of H NMR and C NMR with the literature; HPLC method was used to investigate the stable storage conditions of chebulagic acid and chebulinic acid; lipopolysaccharide (LPS) induced in vivo inflammation model and RAW264.7 macrophage in vitro inflammatory model to evaluate the anti-inflammatory activities of chebulagic acid and chebulinic acid.

View Article and Find Full Text PDF

Anti-vascular endothelial growth factor (VEGF) drugs suppress choroidal neovascularisation (CNV), thus improving vision. However, some patients may have a poor response or develop resistance to anti-VEGF drugs. Geraniin (GE), a polyphenol isolated from an herb called Phyllanthus amarus, possesses anti-angiogenic properties.

View Article and Find Full Text PDF
Article Synopsis
  • Butylated Hydroxytoluene (BHT), commonly used as an antioxidant in food, causes cellular toxicity by inducing oxidative stress and increasing reactive oxygen and nitrogen species (ROS and RNS).
  • The herbal compounds Boeravinone B (BB) and Chebulinic acid (CA), when combined, showed significant protective effects against BHT’s toxicity by reducing levels of ROS and RNS, as well as decreasing enzymes and markers associated with oxidative stress.
  • The treatment with BB and CA effectively reduced apoptosis and autophagy in cells exposed to BHT, promoting cell growth and suggesting their potential use as therapeutic agents for conditions related to oxidative stress-induced liver damage.
View Article and Find Full Text PDF

Dietary tannins can affect rumen microbiota and enteric fermentation to mitigate methane emissions, although such effects have not yet been fully elucidated. We tested two subunits of hydrolyzable tannins named gallic acid (GA) and ellagic acid (EA), alone (75 mg/g DM each) or combined (150 mg/g DM in total), using the Rusitec system. EA and EA+GA treatments decreased methane production, volatile fatty acids, nutrient degradation, relative abundance of , , but increased .

View Article and Find Full Text PDF

Tannins are critical plant defense metabolites, enriched in bark and leaves, that protect against microorganisms and insects by binding to and precipitating proteins. Hydrolyzable tannins contain ester bonds which can be cleaved by tannases-serine hydrolases containing so-called "cap" domains covering their active sites. However, comprehensive insights into the biochemical properties and structural diversity of tannases are limited, especially regarding their cap domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!