Objective: The objective of this study was to determine the role of maximum mitochondrial capacity on the variation in insulin sensitivity within a population of patients with type 2 diabetes mellitus (T2DM).
Research Design And Methods: Fifty-eight participants enrolled in a cross-sectional design: eight active controls [maximum aerobic capacity (VO(2max)) > 40 ml/kg · min], 17 healthy sedentary controls without a family history (FH-) and seven with a family history (FH+) of diabetes, four obese participants, and 21 patients with T2DM. Mitochondrial capacity was measured noninvasively using (31)P magnetic resonance spectroscopy of the vastus lateralis. Maximal ATP synthetic rate (ATP(max)) was determined from the rate of phosphocreatine (PCr) recovery after short-term isometric exercise.
Results: ATP(max) was lower (P < 0.001) in T2DM and higher (P < 0.001) in active as compared with healthy sedentary FH- (active, 1.01 ± 0.2; FH-, 0.7 ± 0.2; FH+, 0.6 ± 0.1; obese, 0.6 ± 0.1; T2DM, 0.5 ± 0.2 mm ATP/sec; ANOVA P < 0.0001). Insulin sensitivity, measured by euglycemic-hyperinsulinemic (80 mIU/m(2) · min) clamp was also reduced in T2DM (P < 0.001) (active, 12.0 ± 3.2; FH-, 7.8 ± 2.2; FH+, 6.8 ± 3.5; obese, 3.1 ± 1.0; T2DM, 3.4 ± 1.6; mg/kg estimated metabolic body size · min; ANOVA P < 0.0001). Unexpectedly, there was a broad range of ATP(max) within the T2DM population where 52% of subjects with T2DM had ATP(max) values that were within the range observed in healthy sedentary controls. In addition, 24% of the T2DM subjects overlapped with the active control group (range, 0.65-1.27 mm ATP/sec). In contrast to the positive correlation between ATP(max) and M-value in the whole population (r(2) = 0.35; P < 0.0001), there was no correlation between ATP(max) and M-value in the patients with T2DM (r(2) = 0.004; P = 0.79).
Conclusions: Mitochondrial capacity is not associated with insulin action in T2DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070252 | PMC |
http://dx.doi.org/10.1210/jc.2010-1621 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.
Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.
Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.
Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).
J Ginseng Res
January 2025
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
Background: Ginseng Berry Concentrate (GBC) enhances exercise capacity in mice, but the effects of its key component, ginsenoside Re (G-Re), on aging and mitochondrial function are not well understood. This study investigates the impact of G-Re on mitophagy and its potential to promote healthy aging.
Methods: Experiments in C2C12 myocytes and HeLa-mitoKeima-PARKIN cells assessed GBC and G-Re's effects on mitophagy, supported by Gene Set Enrichment Analysis.
J Ginseng Res
January 2025
KM Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea.
Background: A decline in muscle mass and function can impact the health, disease vulnerability, and mortality of older adults. Prolonged use of high doses of glucocorticoids, such as dexamethasone (DEX), can cause muscle wasting and reduced strength. Ginsenoside Rc (gRc) has been shown to protect muscles by activating the PGC-1α pathway and improving mitochondrial function.
View Article and Find Full Text PDFLife Metab
June 2023
Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
The thermogenic brown and beige adipocytes consume fatty acids and generate heat to maintain core body temperature in the face of cold challenges. Since their validated presence in humans, the activation of thermogenic fat has been an attractive target for treating obesity and related metabolic diseases. Here, we reported that the opioid growth factor receptor () was highly expressed in adipocytes and promoted thermogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!