Thermochemical conversion processes play a crucial role in all routes from fossil and renewable resources to base chemicals, fuels and energy. Hence, a fundamental understanding of these chemical processes can help to resolve the upcoming challenges of our society. A bench scale pyrolysis set-up has been used to study the thermochemical conversion of rapeseed oil methyl ester (RME), i.e. a mixture of fatty acid methyl esters. A GC×GC, equipped with both a flame ionization detector (FID) and a time-of-flight mass spectrometer (TOF-MS), allows quantitative and qualitative characterization of the reactor feed and product. Analysis of the latter is accomplished using a dedicated high temperature on-line sampling system. Temperature programmed analysis, starting at -40°C, permits effluent characterization from methane up to lignoceric acid methyl ester (C(25)H(50)O(2)), in a single run of the GC×GC. The latter combines a 100% dimethylpolysiloxane primary column with a 50% phenyl polysilphenylene-siloxane secondary column. Modulation is started when the oven temperature reaches 40°C, thus dividing the chromatogram in a conventional 1D and a comprehensive 2D part. The proposed quantification approach allows to combine the quantitative GC×GC analysis with 2 other on-line 1D GC analyses, resulting in a complete and detailed product composition including the measurement of CO, CO(2), formaldehyde and water. The GC×GC reveals that the product stream contains a huge variety of valuable products, such as linear alpha olefins, unsaturated esters and aromatics, that could not have been identified and quantified accurately with conventional 1D GC because of peak overlap.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2010.12.109 | DOI Listing |
Chem Biodivers
January 2025
Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.
View Article and Find Full Text PDFSci Rep
January 2025
Anatomy Department, College of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China.
Hypertension is one of the most serious chronic diseases. This study will focus on the systemic antihypertensive mechanisms of 5,7-dihydroxyflavone from in silico simulations to in vivo validations. In-silico studies were applied by network pharmacology, molecular docking, and molecular dynamic simulation.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
The reduction of aryl carboxylates to methyl and allyl arene was attained using a well-defined cobalt catalyst. This catalytic transformation employs only a sub-stoichiometric amount of base, and diethylsilane as a reductant. Catalytic activation of the Si-H bond of the silanes, C-O bond of the ester, and silyl ether intermediates by cobalt is crucial to achieving exhaustive reduction.
View Article and Find Full Text PDFAutophagy
January 2025
Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.
View Article and Find Full Text PDFTheranostics
January 2025
Department of neurology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea.
It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!