Background: The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available.

Results: We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38) populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa.

Conclusions: Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042011PMC
http://dx.doi.org/10.1186/1471-2164-12-101DOI Listing

Publication Analysis

Top Keywords

maps
9
linkage maps
8
amphidiploid brassica
8
brassica napus
8
integrated map
8
genetic
7
brassica
6
genome
5
map
5
integration
4

Similar Publications

Severe Acute Respiratory Syndrome is an important public health problem in Brazil due to the large number of cases. It has a high mortality rate related to risk factors that include systemic arterial hypertension, type 2 diabetes mellitus, male gender and advanced age. This cross-sectional and ecological study analyzed the spatial distribution of this disease related to the evolution of COVID-19 cases and their epidemiological, demographic, socioeconomic and public health policy conditions in the administrative districts of Belém, state of Pará, in the eastern Brazilian Amazon, from 2021 to 2023.

View Article and Find Full Text PDF

Open set recognition (OSR) requires models to classify known samples while detecting unknown samples for real-world applications. Existing studies show impressive progress using unknown samples from auxiliary datasets to regularize OSR models, but they have proved to be sensitive to selecting such known outliers. In this paper, we discuss the aforementioned problem from a new perspective: Can we regularize OSR models without elaborately selecting auxiliary known outliers? We first empirically and theoretically explore the role of foregrounds and backgrounds in open set recognition and disclose that: 1) backgrounds that correlate with foregrounds would mislead the model and cause failures when encounters 'partially' known images; 2) Backgrounds unrelated to foregrounds can serve as auxiliary known outliers and provide regularization via global average pooling.

View Article and Find Full Text PDF

Background: Asian cancer patients have become the highest morbidity and mortality group, and gastrointestinal tumors account for the majority of them, so it is urgent to find effective targets. Therefore, ferroptosis-related lncRNAs models were established to predict the prognosis and clinical immune characteristics of GI cancer.

Methods: RNA sequencing and clinical data were collected from the TCGA database (LIHC, STAD, ESCA, PAAD, COAD, CHOL, and READ) of patients with gastrointestinal cancer in Asia.

View Article and Find Full Text PDF

Existing technologies for distributed light-field mapping and light pollution monitoring (LPM) rely on either remote satellite imagery or manual light surveying with single-point sensors such as SQMs (sky quality meters). These modalities offer low-resolution data that are not informative for dense light-field mapping, pollutant identification, or sustainable policy implementation. In this work, we propose LightViz-an interactive software interface to survey, simulate, and visualize light pollution maps in real time.

View Article and Find Full Text PDF

Prediction of protein-ligand interactions is critical for drug discovery and repositioning. Traditional prediction methods are computationally intensive and limited in modeling structural changes. In contrast, data-driven deep learning methods significantly reduce computational costs and offer a more efficient approach for drug discovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!