AI Article Synopsis

  • TGF-β is essential for RANKL-induced osteoclastogenesis, as blocking its signaling almost completely inhibits this process.
  • Overexpression of Smad7 or c-Ski, which block Smad signaling, also significantly reduces osteoclast differentiation, while activation of Smad2 or Smad3 can reverse this inhibition.
  • Smad3 directly interacts with the TRAF6-TAB1-TAK1 complex, critical for osteoclast formation, and its MH2 domain is necessary for this interaction and the signaling process following RANKL stimulation.

Article Abstract

Previous studies have shown that transforming growth factor β (TGF-β) promotes receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. However, the underlying molecular mechanisms have not been elucidated. When TGF-β signals were blocked either by a specific inhibitor of TGF-β type 1 receptor kinase activity, SB431542, or by introducing a dominant-negative mutant of TGF-β type 2 receptor, RANKL-induced osteoclastogenesis was almost completely suppressed. Blockade of Smad signaling by overexpression of Smad7 or c-Ski markedly suppressed RANKL-induced osteoclastogenesis, and retroviral induction of an activated mutant of Smad2 or Smad3 reversed the inhibitory effect of SB431542. Immunoprecipitation analysis revealed that Smad2/3 directly associates with the TRAF6-TAB1-TAK1 molecular complex, which is generated in response to RANKL stimulation and plays an essential role in osteoclast differentiation. TRAF6-TAB1-TAK1 complex formation was not observed when TGF-β signaling was blocked. Analysis using deletion mutants revealed that the MH2 domain of Smad3 is necessary for TRAF6-TAB1-TAK1 complex formation, downstream signal transduction, and osteoclast formation. In addition, gene silencing of Smad3 in osteoclast precursors markedly suppressed RANKL-induced osteoclast differentiation. In summary, TGF-β is indispensable in RANKL-induced osteoclastogenesis, and the binding of Smad3 to the TRAF6-TAB1-TAK1 complex is crucial for RANKL-induced osteoclastogenic signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.357DOI Listing

Publication Analysis

Top Keywords

rankl-induced osteoclastogenesis
20
traf6-tab1-tak1 complex
12
tgf-β type
8
type receptor
8
markedly suppressed
8
suppressed rankl-induced
8
osteoclast differentiation
8
complex formation
8
smad3 traf6-tab1-tak1
8
tgf-β
7

Similar Publications

Osteogenic CpG Oligodeoxynucleotide, iSN40, Inhibits Osteoclastogenesis in a TLR9-Dependent Manner.

Life (Basel)

November 2024

Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan.

A CpG oligodeoxynucleotide (CpG-ODN), iSN40, was originally identified as promoting the mineralization and differentiation of osteoblasts, independent of Toll-like receptor 9 (TLR9). Since CpG ODNs are often recognized by TLR9 and inhibit osteoclastogenesis, this study investigated the TLR9 dependence and anti-osteoclastogenic effect of iSN40 to validate its potential as an osteoporosis drug. The murine monocyte/macrophage cell line RAW264.

View Article and Find Full Text PDF

TGF-β3 Restrains Osteoclastic Resorption Through Autophagy.

Bioengineering (Basel)

November 2024

State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, No. 855 East Xingye Avenue, Guangzhou 510632, China.

While TGF-β3 promoted defect healing in a primate baboon skull defect model and patients, it remains unclear whether TGF-β3 affects the formation of osteoclasts and bone resorption between osteogenesis and osteolysis. Analysis of the full transcriptome of hPDLSCs (human periodontal ligament stem cells) revealed that the expression of RANKL was significantly up-regulated after TGF-β3 treatment during osteogenesis, which suggests its involvement in clock-controlled autophagy in bone metabolism. TRAP staining and bone resorption lacunae were used to assess the osteoclasts formed from RANKL-induced differentiated BMMs.

View Article and Find Full Text PDF

Visfatin Enhances RANKL-Induced Osteoclastogenesis In Vitro: Synergistic Interactions and Its Role as a Mediator in Osteoclast Differentiation and Activation.

Biomolecules

November 2024

Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.

Visfatin, an adipokine secreted by various cell types, plays multifaceted pathophysiological roles in inflammatory conditions, including obesity, which is closely associated with osteoclastogenesis, a key process underlying bone loss and increased osteoporosis (OP) risk. However, the role of visfatin in osteoclastogenesis remains controversial. This study was conducted to investigate the effects of visfatin on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation from precursor cells in vitro.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint swelling, pain, and bone remodeling. We previously reported that autotaxin (ATX) deficiency disrupts lipid rafts in macrophages. Lipid raft disruption results in the dysregulation of RANK signaling, which is crucial for osteoclastogenesis and the pathogenesis of RA.

View Article and Find Full Text PDF

Peroxiredoxin 1 (PRDX1), an intracellular antioxidant enzyme, has emerged as a regulator of inflammatory responses via Toll-like receptor 4 (TLR4) signaling. Despite this, the mechanistic details of the PRDX1-TLR4 axis and its impact on osteoclast differentiation remain elusive. Here, we show that PRDX1 suppresses RANKL-induced osteoclast differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!