In diffusion weighted MRI, subject motion and brain pulsation lead both to signal drop-outs and image misalignment. Unsedated neonates, with their higher heart rate and propensity for motion are particularly prone to degraded scan quality that impairs diffusion tensor estimation. Retrospective registration and robust estimators are two methods that have previously been demonstrated to address motion and intensity outliers, respectively, in diffusion data. However, when taken together, the resampling of images to correct for misalignment can have the effect of averaging outlier voxels with uncorrupted voxels, thereby making outliers more difficult to detect. This article presents a method to remove outliers prior to resampling while taking misalignment into account so that this averaging of outliers with good data can be avoided. The proposed method is compared to other processing pipelines using simulations and data from unsedated preterm neonates. These results demonstrate advantages to the proposed method, particularly in subjects with high motion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.22786DOI Listing

Publication Analysis

Top Keywords

outliers prior
8
prior resampling
8
proposed method
8
outliers
5
preterm neonatal
4
diffusion
4
neonatal diffusion
4
diffusion processing
4
processing detection
4
detection replacement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!