Transplantation of olfactory ensheathing cells promotes axonal regeneration and functional recovery of peripheral nerve lesion in rats.

Muscle Nerve

Experimental Surgery Laboratory, Groupe de Recherche sur le Handicap Ventilatoire, UPRES EA 3830, European Institute for Peptide Research (IFRMP 23), Institute for Medical Research, Faculty of Medicine and Pharmacy, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen, France.

Published: April 2011

Introduction: Olfactory ensheathing cells (OECs) hold promise for cell therapy because they may promote regeneration of the central nervous system. However, OECs have been less studied after peripheral nerve injury (PNI). The purpose of this investigation was to determine the effect of OEC transplantation on a severe sciatic nerve (SN) lesion.

Methods: OECs were injected in rats after section and 2-cm resection of the SN.

Results: Three months after therapy, muscle strength and morphometric studies showed complete restoration of the contractile properties of the gastrocnemius and complete repair of the SN. Immunohistochemistry and RT-PCR studies indicated an increase in the presence of neurotrophic factors. Interestingly, tracking of green fluorescent protein (GFP)-positive OECs showed that no OECs were present in the SN.

Discussion: Our results demonstrate that, after severe PNI, OECs have remarkable potential for nerve regeneration by creating a favorable microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.21907DOI Listing

Publication Analysis

Top Keywords

olfactory ensheathing
8
ensheathing cells
8
peripheral nerve
8
oecs
6
transplantation olfactory
4
cells promotes
4
promotes axonal
4
axonal regeneration
4
regeneration functional
4
functional recovery
4

Similar Publications

Article Synopsis
  • Alzheimer's disease was experimentally induced in female Wistar rats through injections of β-amyloid into the hippocampus.
  • Following this, olfactory mucosa cells were transplanted into the same brain region and showed survival and clustering by week 4.
  • The transplanted cells improved cognitive functions significantly between weeks 3-5, suggesting potential for further research on these cells as a personalized treatment for Alzheimer's disease.
View Article and Find Full Text PDF

Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing.

View Article and Find Full Text PDF

Neuroinflammation is a symptom of different neurodegenerative diseases, and growing interest is directed towards active drug development for the reduction of its negative effects. The anti-inflammatory activity of polyunsaturated fatty acids, eicosapentaenoic (EPA), docosahexaenoic (DHA), and their amide derivatives was largely investigated on some neural cells. Herein, we aimed to elucidate the protective role of both EPA and DHA and the corresponding -ethanolamides EPA-EA and DHA-EA on neonatal mouse Olfactory Ensheathing Cells (OECs) after exposition to lipopolysaccharide (LPS)-induced neuroinflammation.

View Article and Find Full Text PDF

Glia in tissue engineering: From biomaterial tools to transplantation.

Acta Biomater

December 2024

Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States. Electronic address:

Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!