Li-Fraumeni syndrome (LFS) is a rare familial cancer syndrome characterized by early cancer onset, diverse tumor types, and multiple primary tumors. Germ-line TP53 mutations have been identified in most LFS families. A high-frequency single-nucleotide polymorphism, SNP309 (rs2279744), in MDM2 was recently confirmed to be a modifier of cancer risk in several case-series studies: substantially earlier cancer onset was observed in SNP309 G-allele carriers than in wild-type individuals by 7-16 years. However, cancer risk analyses that jointly account for measured hereditary TP53 mutations and MDM2 SNP309 have not been systematically investigated in familial cases. Here, we determined the combined effects of measured TP53 mutations, MDM2 SNP309, and gender and their interactions simultaneously in LFS families. We used the method that is designed for extended pedigrees and structured for age-specific risk models based on Cox proportional hazards regression. We analyzed the cancer incidence in 19 extended pedigrees with germ-line TP53 mutations ascertained through the clinical LFS phenotype. The dataset consisted of 463 individuals with 129 TP53 mutation carriers. Our analyses showed that the TP53 germ-line mutation and its interaction with gender were strongly associated with familial cancer incidence and that the association between MDM2 SNP309 and increased cancer risk was modest. In contrast with several case-series studies, the interaction between MDM2 SNP309 and TP53 mutation was not statistically significant in our LFS family cohort. Our results showed that SNP309 G-alleles were associated with accelerated tumor formation in both carriers and non-carriers of germ-line TP53 mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4194062PMC
http://dx.doi.org/10.1007/s00439-011-0957-1DOI Listing

Publication Analysis

Top Keywords

mdm2 snp309
20
tp53 mutations
20
germ-line tp53
16
cancer risk
16
tp53 mutation
12
tp53
9
cancer
9
snp309
8
snp309 gender
8
li-fraumeni syndrome
8

Similar Publications

The MDM2 SNP309 differentially impacts cardiorespiratory fitness in young healthy women and men.

Eur J Appl Physiol

December 2024

School of Kinesiology and Health Science, Faculty of Health, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.

Purpose: Maximal oxygen consumption (VOmax), the predominant index of cardiorespiratory fitness (CRF), is a predictor of whole-body function and longevity in humans. The central cardiac function and the skeletal muscle's capacity to use oxygen are key determinants of VOmax. Murine Double Minute 2 (MDM2), mainly known as an oncogene, could regulate myocardial hypertrophy, skeletal muscle angiogenesis, and oxidative phosphorylation.

View Article and Find Full Text PDF

Background And Purpose: Classic Kaposi sarcoma (CKS) is a rare vascular disease mainly found in populations of Mediterranean origin. The pathogenesis involves Human Herpes Virus 8 (HHV8) and genetic mutations such as SNP309 in the MDM2 gene. The recently discovered BPTF mutation in cells of CKS patients demonstrated higher latency-associated nuclear antigen (LANA) staining and altered vital transcriptomics, implicating a potential role in tumorigenesis.

View Article and Find Full Text PDF

-SNP309 (rs2279744), a common genetic modifier of cancer incidence in Li-Fraumeni syndrome, modifies risk, age of onset, or prognosis in a variety of cancers. Melanoma incidence and outcomes vary by sex, and although SNP309 exerts an effect on the estrogen receptor, no consensus exists on its effect on melanoma. MDM2 and MDM4 restrain p53-mediated tumor suppression, independently or together.

View Article and Find Full Text PDF

Objective: The embryo implantation includes a complex sequence of signaling events, comprising numerous molecular mediators, such as ovarian hormones, cytokines, adhesion molecules and, growth factors. One of the critical factors in angiogenesis is the vascular endothelial growth factor (VEGF). The VEGF plays a pivotal role in embryonic development, decidua vascularization and placental angiogenesis.

View Article and Find Full Text PDF

To investigate the role of the () gene single-nucleotide polymorphism (SNP) T309G in the development of epimacular membranes (EMMs) by analyzing the genotype distribution and consistency of the polymorphism in paired membrane-blood samples. This was a cross-sectional genetic association study of patients with proliferative vitreoretinopathy (PVR) or EMMs. PVR membranes (PVRMs), internal limiting membranes (ILMs) (PVR-ILMs) and blood samples (PVR-blood) from patients with PVR, and EMMs, EMM-ILMs and EMM-blood from patients with EMMs were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!