Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The response of Acidithiobacillus ferrooxidans to variations in extracellular Cu exposure was investigated in terms of glutathione-related genes expression profiling based on reverse-transcription quantitative PCR analysis. The results show that the higher concentration of Cu would induce the expression of glutathione-related enzymes and cells elicited specific transcriptional responses when challenged with environmental Cu (0.08 mol l(-1)) conditions over a 60-min period. In comparison to the control, glutathione S-transferases (GST) and glutathione reductase (GR) were highly expressed when the cells were grown in the medium with copper, and the increase of glutathione and glutathione-related enzymes makes the cells acclimate to oxidative stress induced by Cu and protects the cells from toxicity caused by Cu exposure. It suggests that in order for Acidithiobacillus ferrooxidans to counteract the conditions of external Cu exposure, it modulated its expression level of GST, GR, glutathione hydrolase, and glutathione synthetase, which may protect organisms from oxidative damage. These parameters may be used to assess the biological impact of Cu in mining activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-011-9881-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!