Recent developments in ruthenium anticancer drugs.

Metallomics

School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia.

Published: November 2009

Interest in Ru anticancer drugs has been growing rapidly since NAMI-A ((ImH(+))[Ru(III)Cl(4)(Im)(S-dmso)], where Im = imidazole and S-dmso = S-bound dimethylsulfoxide) or KP1019 ((IndH(+))[Ru(III)Cl(4)(Ind)(2)], where Ind = indazole) have successfully completed phase I clinical trials and an array of other Ru complexes have shown promise for future development. Herein, the recent literature is reviewed critically to ascertain likely mechanisms of action of Ru-based anticancer drugs, with the emphasis on their reactions with biological media. The most likely interactions of Ru complexes are with: (i) albumin and transferrin in blood plasma, the former serving as a Ru depot, and the latter possibly providing active transport of Ru into cells; (ii) collagens of the extracellular matrix and actins on the cell surface, which are likely to be involved in the specific anti-metastatic action of Ru complexes; (iii) regulatory enzymes within the cell membrane and/or in the cytoplasm; and (iv) DNA in the cell nucleus. Some types of Ru complexes can also promote the intracellular formation of free radical species, either through irradiation (photodynamic therapy), or through reactions with cellular reductants. The metabolic pathways involve competition among reduction, aquation, and hydrolysis in the extracellular medium; binding to transport proteins, the extracellular matrix, and cell-surface biomolecules; and diffusion into cells; with the extent to which individual drugs participate in various steps along these pathways being crucial factors in determining whether they are mainly anti-metastatic or cytotoxic. This diversity of modes of action of Ru anticancer drugs is also likely to enhance their anticancer activities and to reduce the potential for them to develop tumour resistance. New approaches to metabolic studies, such as X-ray absorption spectroscopy and X-ray fluorescence microscopy, are required to provide further mechanistic insights, which could lead to the rational design of improved Ru anticancer drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b904071dDOI Listing

Publication Analysis

Top Keywords

anticancer drugs
20
extracellular matrix
8
anticancer
6
drugs
6
developments ruthenium
4
ruthenium anticancer
4
drugs interest
4
interest anticancer
4
drugs growing
4
growing rapidly
4

Similar Publications

Phytochemical profile of Taxus globosa Schltdl. and its anxiolytic, antinociceptive, and toxicological evaluation in mice.

J Ethnopharmacol

January 2025

Posgrado en Botánica, Colegio Postgraduados Campus Montecillo Km. 36.5 Carretera México-Texcoco C.P. Montecillo, 56264, Texcoco Estado de México, México. Electronic address:

Ethnopharmacological Relevance: Taxus globosa Schltdl. (Taxaceae) is commonly named "Tejo mexicano". It's a Mexican plant known in folk medicine as a remedy for pain such as stomachache and headache, arthritis, gout, and other inflammatory conditions.

View Article and Find Full Text PDF

The vascular endothelial growth factor receptor is essential for the angiogenesis of cancer. Tumor propagation was effectively suppressed by inhibiting VEGFR-2 activity. As a result, the target quinoxaline-pyrazole hybrids were created in a way that closely resembled the structural characteristics of VEGFR-2 inhibitors.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Introduction: We conducted a panoramic analysis of GBN5 expression and prognosis in 33 cancers, aiming to deepen the systematic understanding of GBN5 in cancer.

Materials And Methods: We employed a multi-omics approach, including transcriptomic, genomic, proteomic, single-cell cytomic, spatial transcriptomic, and genomic data, to explore the prognostic value and potential oncogenic mechanisms of GBN5 across pan-cancers from multiple perspectives.

Results: We found that GBN5 was differentially expressed in multiple tumors and showed early diagnostic value.

View Article and Find Full Text PDF

In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!