AI Article Synopsis

  • Excessive proinflammatory cytokine release from innate immune cells plays a critical role in malaria's harmful effects, linked to the activation of Toll-like receptors (TLRs) during infection.
  • E6446, a synthetic TLR antagonist, effectively inhibits TLR9 activation in both human and mouse models, and also targets TLR8 at higher doses.
  • In studies of experimental cerebral malaria, E6446 not only reduced harmful cytokine responses but also prevented severe symptoms like limb paralysis and brain complications, highlighting its potential as a therapeutic strategy against malaria-induced inflammation.

Article Abstract

Excessive release of proinflammatory cytokines by innate immune cells is an important component of the pathogenic basis of malaria. Proinflammatory cytokines are a direct output of Toll-like receptor (TLR) activation during microbial infection. Thus, interference with TLR function is likely to render a better clinical outcome by preventing their aberrant activation and the excessive release of inflammatory mediators. Herein, we describe the protective effect and mechanism of action of E6446, a synthetic antagonist of nucleic acid-sensing TLRs, on experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA. We show that in vitro, low doses of E6446 specifically inhibited the activation of human and mouse TLR9. Tenfold higher concentrations of this compound also inhibited the human TLR8 response to single-stranded RNA. In vivo, therapy with E6446 diminished the activation of TLR9 and prevented the exacerbated cytokine response observed during acute Plasmodium infection. Furthermore, severe signs of ECM, such as limb paralysis, brain vascular leak, and death, were all prevented by oral treatment with E6446. Hence, we provide evidence that supports the involvement of nucleic acid-sensing TLRs in malaria pathogenesis and that interference with the activation of these receptors is a promising strategy to prevent deleterious inflammatory responses that mediate pathogenesis and severity of malaria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048158PMC
http://dx.doi.org/10.1073/pnas.1015406108DOI Listing

Publication Analysis

Top Keywords

nucleic acid-sensing
12
experimental cerebral
8
cerebral malaria
8
excessive release
8
proinflammatory cytokines
8
acid-sensing tlrs
8
malaria
5
activation
5
therapeutical targeting
4
targeting nucleic
4

Similar Publications

Z-Nucleic Acid Sensing and Activation of ZBP1 in Cellular Physiology and Disease Pathogenesis.

Immunol Rev

January 2025

Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India.

Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation.

View Article and Find Full Text PDF

Transcriptomic landscapes of STING-mediated DNA-sensing reveal cellular response heterogeneity.

Int J Biol Macromol

December 2024

Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Transfection of plasmid DNA (pDNA) encoding target genes is a routine tool in gene function studies and therapeutic applications. However, nucleic acid-sensing-mediated innate immune responses influence multiple intracellular signaling pathways. The stimulator of interferon genes (STING) is a crucial adapter protein for DNA sensors in mammalian cells.

View Article and Find Full Text PDF

During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme - the senescence-associated secretory phenotype (SASP) - driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear.

View Article and Find Full Text PDF

DNA damage underlies the progression of asthma toward a severe, steroid hyporesponsive phenotype. The accumulation of double-stranded DNA within the cytosol triggers the activation of cytosolic DNA-sensing pathways, notably the Stimulator of Interferon Genes (STING) pathway. However, the precise role of STING in driving steroid hyporesponsiveness remains elusive and warrants further investigation.

View Article and Find Full Text PDF

Nucleic acids are a critical trigger for the innate immune response to infection, wherein pathogen-derived RNA and DNA are sensed by nucleic acid sensing receptors. This subsequently drives the production of type I interferon and other inflammatory cytokines to combat infection. While the system is designed such that these receptors should specifically recognize pathogen-derived nucleic acids, it is now clear that self-derived RNA and DNA can also stimulate these receptors to cause aberrant inflammation and autoimmune disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!