Electron tomography reveals a flared morphology on growing microtubule ends.

J Cell Sci

European Molecular Biology Laboratories, Cell Biology and Biophysics Program, D-69117 Heidelberg, Germany.

Published: March 2011

Microtubules (MTs) exhibit dynamic instability, alternating between phases of growth and shortening, mostly at their uncapped plus ends. Based on results from cryo-electron microscopy it was proposed that growing MTs display mainly curved sheets and blunt ends; during depolymerisation curled 'ramshorns' predominate. Observations of MTs in mitotic cells have suggested that the situation in vivo differs from that in vitro, but so far, a clear comparison between in vivo and in vitro results has not been possible because MT end structures could not be correlated directly with the dynamic state of that particular MT. Here we combine light microscopy and electron tomography (ET) to show that growing MT plus ends in the fission yeast Schizosaccharomyces pombe display predominantly a flared morphology. This indicates that MT polymerisation in vivo and in vitro can follow different paths.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039015PMC
http://dx.doi.org/10.1242/jcs.072967DOI Listing

Publication Analysis

Top Keywords

electron tomography
8
flared morphology
8
vivo vitro
8
tomography reveals
4
reveals flared
4
morphology growing
4
growing microtubule
4
ends
4
microtubule ends
4
ends microtubules
4

Similar Publications

Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.

View Article and Find Full Text PDF

Design, additive manufacturing, and characterization of an organ-on-chip microfluidic device for oral mucosa analogue growth.

J Mech Behav Biomed Mater

December 2024

Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. Electronic address:

Introduction: Α customized organ-on-a-chip microfluidic device was developed for dynamic culture of oral mucosa equivalents (Oral_mucosa_chip-OMC).

Materials And Methods: Additive Manufacturing (AM) was performed via stereolithography (SLA) printing. The dimensional accuracy was evaluated via microfocus computed tomography (mCT), the surface characteristics via scanning electron microscopy (SEM), while the mechanical properties via nanoindentation and compression tests.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the osseointegration properties of titanium bone implants coated with carob-mediated calcium hydroxide nanoparticles biomechanically, radiographically, and histologically on rabbit tibias.

Material And Methods: Forty coated and forty uncoated titanium alloy bone implants were inserted into 20 New Zealand rabbits; each tibia received 2 implants. The rabbits were sacrificed after 4 or 8 weeks, and samples were retrieved for biomechanical evaluation through removal torque test to assess the bond between implant and bone, radiographic evaluation through microcomputed tomography analysis to compare the bone-to-implant contact percentage and bone volume of the peri-implant area, scanning electron microscopic and histologic evaluation through hematoxylin and eosin stain.

View Article and Find Full Text PDF

This study aimed to evaluate the scanning time and marginal fit of CAD/CAM crowns fabricated using different intraoral scanning systems (IOS) (O1-Omnicam 1.0, O2-Omnicam 2.0, PS-Primescan).

View Article and Find Full Text PDF

Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl using several complementary techniques: rheometry, isothermal titration calorimetry, FTIR-spectroscopy, cryo-electron microscopy, cryo-electron tomography, and polarized optical microscopy. Increasing CaCl concentration was shown to induce a strong increase in the storage modulus of CNC hydrogels accompanied by the growth of CNC aggregates included in the network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!