Failure of Aβ(1-40) amyloid fibrils under tensile loading.

Biomaterials

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Published: May 2011

Amyloid fibrils and plaques are detected in the brain tissue of patients affected by Alzheimer's disease, but have also been found as part of normal physiological processes such as bacterial adhesion. Due to their highly organized structures, amyloid proteins have also been used for the development of nanomaterials, for a variety of applications including biomaterials for tissue engineering, nanolectronics, or optical devices. Past research on amyloid fibrils resulted in advances in identifying their mechanical properties, revealing a remarkable stiffness. However, the failure mechanism under tensile loading has not been elucidated yet, despite its importance for the understanding of key mechanical properties of amyloid fibrils and plaques as well as the growth and aggregation of amyloids into long fibers and plaques. Here we report a molecular level analysis of failure of amyloids under uniaxial tensile loading. Our molecular modeling results demonstrate that amyloid fibrils are extremely stiff with a Young's modulus in the range of 18-30 GPa, in good agreement with previous experimental and computational findings. The most important contribution of our study is our finding that amyloid fibrils fail at relatively small strains of 2.5%-4%, and at stress levels in the range of 1.02 to 0.64 GPa, in good agreement with experimental findings. Notably, we find that the strength properties of amyloid fibrils are extremely length dependent, and that longer amyloid fibrils show drastically smaller failure strains and failure stresses. As a result, longer fibrils in excess of hundreds of nanometers to micrometers have a greatly enhanced propensity towards spontaneous fragmentation and failure. We use a combination of simulation results and simple theoretical models to define critical fibril lengths where distinct failure mechanisms dominate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2010.11.066DOI Listing

Publication Analysis

Top Keywords

amyloid fibrils
32
tensile loading
12
amyloid
9
fibrils
9
fibrils plaques
8
mechanical properties
8
properties amyloid
8
fibrils extremely
8
gpa good
8
good agreement
8

Similar Publications

Background/objectives: Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP).

View Article and Find Full Text PDF

: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay.

View Article and Find Full Text PDF

Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) have a substantial effect on overall disease management, health system costs, and patient outcomes. However, exacerbations are often underdiagnosed or recognized with great delay due to several factors such as patients' inability to differentiate between acute episodes and symptom fluctuations, delays in seeking medical assistance, and disparities in dyspnea perception. Self-management intervention plans, telehealth and smartphone-based programs provide educational material, counseling, virtual hospitals and telerehabilitation, and help COPD patients to identify exacerbations early.

View Article and Find Full Text PDF

: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!