Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.

Biomacromolecules

Graduate School of Agricultural, Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

Published: March 2011

Cellulose nanofibers were prepared by TEMPO-mediated oxidation of wood pulp and tunicate cellulose. The cellulose nanofiber suspension in water was spun into an acetone coagulation bath. The spinning rate was varied from 0.1 to 100 m/min to align the nanofibers to the spun fibers. The fibers spun from the wood nanofibers had a hollow structure at spinning rates of >10 m/min, whereas the fibers spun from tunicate nanofibers were porous. Wide-angle X-ray diffraction analysis revealed that the wood and tunicate nanofibers were aligned to the fiber direction of the spun fibers at higher spinning rates. The wood spun fibers at 100 m/min had a Young's modulus of 23.6 GPa, tensile strength of 321 MPa, and elongation at break of 2.2%. The Young's modulus of the wood spun fibers increased with an increase in the spinning rate because of the nanofiber orientation effect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm101510rDOI Listing

Publication Analysis

Top Keywords

spun fibers
16
cellulose nanofibers
8
spinning rate
8
100 m/min
8
fibers spun
8
spinning rates
8
tunicate nanofibers
8
wood spun
8
young's modulus
8
fibers
7

Similar Publications

Physicochemical Properties of Carbon Fiber Formulated from Melt-Spun Raw Asphaltene.

ACS Omega

December 2024

Department of Mechanical Engineering, University of Alberta, 116 St & 85 Avenue, Edmonton, Alberta T6G 2R3, Canada.

One of the challenges in carbon fiber production centers around the high cost of raw materials required for fiber precursors or complex production processes involving multiple steps. This research paper delves into the utilization of asphaltene sourced from Alberta oil sands as an alternative precursor material that is low cost for carbon fiber production. We investigated the carbon fiber production process using a blend of different asphaltene types via melt-spinning technology.

View Article and Find Full Text PDF

Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties.

View Article and Find Full Text PDF

Versatile and Fast Electrochemical Activation Method for Carbon Nanotube Fibers with Diverse Active Materials.

Small Methods

December 2024

Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea.

In this study, the challenge of non-electrochemical activity in carbon nanotube fibers (CNTFs) is addressed by developing a modified chlorosulfonic acid (CSA) densification process specifically developed for directly spun CNTFs. This post-treatment method, well-known for enhancing the physical properties of CNTFs, utilizes the double diffusion phenomenon to efficiently integrate a diverse range of active materials, from conductive polymers like polyaniline (PANI) to metal oxides like nickel oxide (NiO), into the fibers. This universal and cost-effective approach not only simplifies the integration process but also significantly boosts both the electrochemical and physical properties of the fibers.

View Article and Find Full Text PDF

In this study, a transient viscosity adjustment method using a coaxial nozzle was explored to fabricate nanofibers from non-spinnable -poly(hydroxyamide) (-PHA). Unlike conventional electrospinning methods that often require additives to induce fiber formation, this approach relies on a sheath-core configuration, introducing tetrahydrofuran (THF) to the sheath to temporarily adjust solution viscosity. The diffusion of THF into the core -PHA solution resulted in momentary solidification at the interface, promoting nanofiber formation without compromising polymer solubility.

View Article and Find Full Text PDF

This study addresses the critical need for effective antibacterial materials by exploring the innovative integration of dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DTSACl) onto cellulose nanocrystal (CNC), followed by its incorporation into polylactic acid and gelatin matrices to engineer antibacterial nanofiber mats. The modification of CNC with DTSACl (QACNC) was studied and confirmed by FT-IR, C NMR, and XRD analysis. Furthermore, the impact of such addition on the morphology, mechanical, hydrophobic properties, and antibacterial efficacy of the resultant QACNC nanofibers were thoroughly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!