We have developed a polymer-incarcerated bimetallic Au-Pd nanocluster and boron as a catalyst for the sequential oxidation-addition reaction of 1,3-dicarbonyl compounds with allylic alcohols. The desired tandem reaction products were obtained in good to excellent yields under mild conditions with broad substrate scope. In the course of our studies, we discovered that the excess reducing agent, sodium borohydride, reacts with the polymer backbone to generate an immobilized tetravalent boron catalyst for the Michael reaction. In addition, we found bimetallic Au-Pd nanoclusters to be particularly effective for the aerobic oxidation of allylic alcohols under base- and water-free conditions. The ability to conduct the reaction under relatively neutral and anhydrous conditions proved to be key in maintaining good catalyst activity during recovery and reuse of the catalyst. Structural characterization (STEM, EDS, SEM, and N(2) absorption/desorption isotherm) of the newly prepared PI/CB-Au/Pd/B was performed and compared to PI/CB-Au/Pd. We found that while boron was important for the Michael addition reaction, it was found to alter the structural profile of the polymer-carbon black composite material to negatively affect the allylic oxidation reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja110142y | DOI Listing |
Environ Toxicol Chem
January 2025
Department of Environmental Toxicology (UTOX), Swiss Federal Institute of Aquatic Science and Technology, Eawag, Switzerland.
Assessment of potential impacts of chemicals on the environment traditionally involves regulatory standard data requirements for acute aquatic toxicity testing using algae, daphnids and fish (e.g., OECD test guidelines (TG) 201, 202, and 203, respectively), representing different trophic levels.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden.
Herein, we present a highly efficient allylic substitution of carbonates with Grignard reagents using a reusable cellulose-supported nanocopper catalyst. This approach highlights the first instance of heterogeneous catalysis for the cross-coupling of allylic alcohol substrates with Grignard reagents. The method features high yields, excellent regioselectivity, and complete chirality transfer.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
The synthesis of 2-hydroxy analogues of castanospermine from two new iminooctitols via Mitsunobu cyclization is described. The iminooctitols were derived from the dihydroxylation of an allyl alcohol intermediate, obtained by adding vinylmagnesium bromide to the C6-aldehyde of a protected 1-deoxynojirimycin. An orthogonally protected hemiacetal with silyl group at the C6-hydroxy position and remaining as benzyl ethers, synthesized in four steps from d-glucose, served as a building block in the synthesis of the 1-deoxynojirimycin intermediate.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!