The effect of confinement within some zeolitic structures on the activity and selectivity of metallocene catalysts for the ethylene oligomerization has been investigated using grand canonical Monte Carlo simulations (GCMC). The following zeolite (host) frameworks displaying different pore sizes, have been studied as solid hosts: mazzite (MAZ), AIPO-8 (AET), UTD-1F (DON), faujasite (FAU), and VPI-5 (VFI). Intermediates and transition states involved in the ethylene trimerization reaction catalyzed by a Ti-based catalyst [(η(5)-C(5)H(4)CMe(2)C(6)H(5))TiCl(3)/MAO] have been used as sorbates (guests). We have demonstrated linear correlations with slope a(H,j) between the adsorption enthalpy and the molecular volume V(m) of the sorbates, each holding for a given microporous host below a host-specific threshold V(mmax,j). Beyond this maximal molecular volume, the adsorption vanishes due to steric exclusion. a(H,j) increases, and V(mmax,j) decreases with decreasing host pore size, in line with the confinement concept. We moreover showed that, in the limit of vanishing loading (Henry regime), the enthalpies and entropies of adsorption in a given host are linearly correlated. We have defined a host-specific confinement compensation temperature a(j), which refers to a temperature where the stabilizing adsorption enthalpic interactions are canceled out against the loss in entropy. However, calculated a(j) are much larger than the operating temperatures. With a setup microkinetic model, we predict that the activity and selectivity of the confined Ti-catalyst in ethylene oligomerization can be significantly altered with respect to homogeneous phase conditions, since the adsorption free energies of transition states and intermediates also become functions of a(H,j) and V(m). We have applied this theory to predict the optimum host pore size to get maximum α-octene production, instead of α-hexene, which is primarily produced in the homogeneous phase. We also predict a significantly increased activity for confined catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja105950z | DOI Listing |
Rheumatology (Oxford)
January 2025
Department of Rheumatology, Rheumazentrum Ruhrgebiet, Herne, Germany.
Objectives: To compare the utility values of Spondyloarthritis (SpA)-specific ASAS Health Index (U-ASAS-HI) to generic utilities and to understand the contribution of health outcomes, personal- and country-level factors to the U-ASAS-HI.
Methods: Ancillary analysis of the ASAS-HI international validation study. SpA patients who completed the ASAS-HI, 5-level EuroQol-5D (EQ-5D-5L) and Short Form-36 (SF-36) questionnaires were selected, and utilities calculated.
Pain Ther
January 2025
Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185, Rome, Italy.
Introduction: Elbow ailments are common, but conventional treatment modalities have shortcomings, offering only interim pain relief rather than targeting the underlying pathophysiology. The last two decades have seen a marked increase in the use of autologous peripheral blood-derived orthobiologics (APBOs), such as platelet-rich plasma (PRP), to manage elbow disorders. Platelet-rich plasma (PRP) is the most widely used APBO, but its efficacy remains debatable.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!