The FIP1L1-PDGFRA (F/P) fusion gene, which was identified as a recurrent molecular finding in hypereosinophilic syndrome (HES), lead to a constitutively increased tyrosine kinase activity of the fusion protein. Despite data obtained in animals or cell lines models, the mechanisms underlying the predominant eosinophil lineage targeting and the cytotoxicity of eosinophils in this leukemia remain unclear. To define more precisely intrinsic molecular events associated with F/P gene, we performed a proteomic analysis comparing F/P+ eosinophils (F/P-Eos) and eosinophils from healthy donors (C-Eos). Using 2D-DIGE and mass spectrometry techniques, we identified 41 proteins significantly overexpressed between F/P-Eos and C-Eos. Among them, 17.8% belonged to the oxidoreductase family. We further observed a down-expression of peroxiredoxin-2 (PRX-2) and an overexpression of src-homology-2 domain containing tyrosine phosphatase (SHP-1), enzymes regulating PDGFR downstream pathways, and especially intracellular reactive oxygen species (ROS) production. This profile, confirmed in immunoblot analysis, appears specific to F/P-Eos compared to controls and patients with idiopathic HES. In this clonal disorder possibly involving a pluripotent hematopoietic stem cell, we postulate that the well documented relationships between PDGFRA downstream signals and intracellular ROS levels might influence the phenotype of this leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr100836pDOI Listing

Publication Analysis

Top Keywords

proteomic analysis
8
comparative proteomic
4
analysis blood
4
eosinophils
4
blood eosinophils
4
eosinophils reveals
4
reveals redox
4
redox signaling
4
signaling modifications
4
modifications patients
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!