Negative density-dependent mortality can promote species coexistence through a spacing mechanism that prevents species from becoming too locally abundant. Negative density-dependent seedling mortality can be caused by interactions among seedlings or between seedlings and neighboring adults if the density of neighbors affects the strength of competition or facilitates the attack of natural enemies. We investigated the effects of seedling and adult neighborhoods on the survival of newly recruited seedlings for multiple cohorts of known age from 163 species in Yasuni National Park, Ecuador, an ever-wet, hyper-diverse lowland Amazonian rain forest. At local scales, we found a strong negative impact on first-year survival of conspecific seedling densities and adult abundance in multiple neighborhood sizes and a beneficial effect of a local tree neighborhood that is distantly related to the focal seedling. Once seedlings have survived their first year, they also benefit from a more phylogenetically dispersed seedling neighborhood. Across species, we did not find evidence that rare species have an advantage relative to more common species, or a community compensatory trend. These results suggest that the local biotic neighborhood is a strong influence on early seedling survival for species that range widely in their abundance and life history. These patterns in seedling survival demonstrate the role of density-dependent seedling dynamics in promoting and maintaining diversity in understory seedling assemblages. The assemblage-wide impacts of species abundance distributions may multiply with repeated cycles of recruitment and density-dependent seedling mortality and impact forest diversity or the abundance of individual species over longer time scales.

Download full-text PDF

Source
http://dx.doi.org/10.1890/08-2323.1DOI Listing

Publication Analysis

Top Keywords

density-dependent seedling
16
seedling mortality
12
seedling
11
species
10
species coexistence
8
amazonian rain
8
rain forest
8
negative density-dependent
8
seedling survival
8
widespread density-dependent
4

Similar Publications

The emergence and maintenance of tree species diversity in tropical forests is commonly attributed to the Janzen-Connell (JC) hypothesis, which states that growth of seedlings is suppressed in the proximity of conspecific adult trees. As a result, a JC distribution due to a density-dependent negative feedback emerges in the form of a (transient) pattern where conspecific seedling density is highest at intermediate distances away from parent trees. Several studies suggest that the required density-dependent feedbacks behind this pattern could result from interactions between trees and soil-borne pathogens.

View Article and Find Full Text PDF

Tropical tree diversity increases with rainfall. Direct physiological effects of moisture availability and indirect effects mediated by biotic interactions are hypothesized to contribute to this pantropical increase in diversity with rainfall. Previous studies have demonstrated direct physiological effects of variation in moisture availability on tree survival and diversity, but the indirect effects of variation in moisture availability on diversity mediated by biotic interactions have not been shown.

View Article and Find Full Text PDF

Plants are attacked by multiple herbivores, and depend on a precise regulation of responses to cope with a wide range of antagonists. Simultaneous herbivory can occur in different plant compartments, which may pose a serious threat to plant growth and reproduction. In particular, plants often face co-occurring root and floral herbivory, but few studies have focused on such interactions.

View Article and Find Full Text PDF

Early damage enhances compensatory responses to herbivory in wild lima bean.

Front Plant Sci

November 2022

Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.

Damage by herbivores can induce various defensive responses. Induced resistance comprises traits that can reduced the damage, while compensatory responses reduce the negative effects of damage on plant fitness. Timing of damage may be essential in determining the patterns of induced defenses.

View Article and Find Full Text PDF

Seedling recruitment can be strongly affected by the composition of nearby plant species. At the neighborhood scale (on the order of tens of meters), adult conspecifics can modify soil chemistry and the presence of host microbes (pathogens and mutualists) across their combined canopy area or rooting zones. At local or small spatial scales (on the order of one to few meters), conspecific seed or seedling density can influence the strength of intraspecific light and resource competition and also modify the density-dependent spread of natural enemies such as pathogens or invertebrate predators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!