AI Article Synopsis

  • The study investigates the NCX1 exchanger's role and structure-function relationship, identifying a mutant mouse line with a specific point mutation in the Ncx1 gene that substitutes a critical asparagine residue.
  • The mutation leads to serious defects in circulation and placentation in embryos, similar to those observed in complete loss-of-function mutants.
  • Ex vivo analyses reveal that the functional issues stem from intrinsic abnormalities in cardiomyocytes, and the study emphasizes the importance of the N874 amino acid in NCX1 function while showcasing the value of forward genetic screens in mammals.

Article Abstract

The biological role and structure-function relationship of the Na(+)Ca(2+) exchanger NCX1 have been the subject of much investigation. Subtle mutagenesis to study the function of a protein seems only feasible in in vitro systems, but genetic forward screens have the potential to provide in vivo models to study single amino acid substitutions. In a genetic screen in mouse, we have isolated a mutant line carrying a novel mutant allele of the mouse Ncx1 gene. In this allele, a point mutation causes the substitution of a highly conserved asparagine residue (N874) with lysine. Accepted models for NCX1 structure propose that the affected amino acid is located in one of the reentrant membrane loops and experiments in vitro have identified N874 as critical for the ion transport function of NCX1. We found severe circulation defects and defective placentation in homozygous Ncx1(N87K4) mutant embryos, making the phenotype essentially indistinguishable from those of previously described null mutants. By ex vivo analysis, we demonstrated intrinsic functional abnormalities of cardiomyocytes. Western blot analysis and immunohistochemistry demonstrated normal levels and subcellular localization of the altered protein, ruling out the possibility that the abnormalities are a mere consequence of a major disturbance of protein structure. This study confirms and extends studies in vitro indicating the significance of amino acid N874 for the function of the NCX1 protein. It provides an in vivo model for this mutation and demonstrates the potential of forward genetic screens in a mammalian system.

Download full-text PDF

Source
http://dx.doi.org/10.1387/ijdb.093051cwDOI Listing

Publication Analysis

Top Keywords

amino acid
16
novel mutant
8
mutant allele
8
single amino
8
function ncx1
8
ncx1
6
allele ncx1
4
ncx1 single
4
amino
4
acid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!